• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

Combustion of Alcohols Investigation.

Extracts from this document...


Combustion of Alcohols Investigation PLAN Aim: To find out how much energy is required to burn enough of the following alcohols: methanol, ethanol, propanol and pentanol, in order to heat a beaker of water by 40�. The combustion of an alcohol is an exothermic reaction, meaning that more energy is given off during the process than is being taken in. by knowing the individual bond energies for each bond, we can calculate what the energy values obtained from our investigation should aspire to to be accurate. Each bond (eg. C-H, where the '-' signifies a single bond, or O=O, where the '=' denotes a double bond), have different energies. They are as follows: Bond Bond energy (kJmol-1) C-H O=O C=O H-O C-C C-O 435 497 803 464 347 358 MOLECULE DIAGRAMS The following are the reactions which occur when each alcohol combusts. METHANOL: CH3OH + 11/2 O2 CO2 + 2H2O ETHANOL: CH3CH2OH + 3O2 2CO2 + 3H2O PROPANOL: CH3CH2CH2OH + 41/2 O2 3CO2 + 4H2O PENTANOL: CH3CH2CH2CH2CH2OH + 71/2 O2 5CO2 + 6H2O Given this knowledge we can calculate how much energy should be given out per mole of alcohol that is combusted. To do this we add up the bond energies for each bond that is either broken or made during the combustion process. We then simply subtract the total energy given out from the total energy used up. We should in theory obtain a negative number from this, as energy is lost in the reaction. CALCULATIONS: METHANOL: (C-H) ...read more.


The following diagram shows the new set-up: As before 100cm3 of water was put in the beaker. This time, the bottom of the beaker was cleaned for soot before each reading was taken. The thermometer was placed in the same way as before, we again lit the burner until the water had changed temperature from 20 to 60 degrees C. Again, the burner was weighed before and after heating the water, but this time the lid was kept on to make sure no alcohol evaporated on the way to the scales, which would compromise the integrity of the readings. Where each alcohol had two readings taken from it in the trial run, this time we would take three readings from each to give a better average. RESULTS: alcohol mass at 20 mass at 60 mass change temp change mass of water (g) (g) (g) (degrees C) (cm3) meth1 111.7 109.4 2.3 40 100 meth2 109.3 106.9 2.4 40 100 meth3 110.6 108.5 2.1 40 100 eth1 112.6 110.6 2 40 100 eth2 157.6 155.9 1.7 40 100 eth3 116.1 114.4 1.7 40 100 prop1 126.1 124.5 1.6 40 100 prop2 168.1 166.8 1.3 40 100 prop3 125.1 123.8 1.3 40 100 pent1 159.8 158.8 1 40 100 pent2 162.8 161.9 0.9 40 100 pent3 116.1 115.1 1 40 100 From this table of results we can take the averages, to give a more accurate final set of values. ...read more.


As stated previously, it would be unfeasible to create such measures within a school environment to effectively minimise heat loss to the air. IMPROVEMENTS: To increase accuracy, more measurements could have been taken per alcohol, even though three, as was undertaken, could easily be accepted as sufficient. The more readings taken, the bigger the chance of spotting any anomalies, even though there were no glaring ones in this particular investigation. No matter how much the bottom of the vessel was cleaned, there would still be some dirt on the bottom which could hinder the energy transfer, so an easier to clean vessel could be utilised. The only way to maximise energy transfer to the water and eradicate heat loss to the air, would be to use a bomb calorimeter, as shown below. However this is highly unfeasible for such a small-scale experiment and contains too much water, so heating it all by 40 degrees would take a lot longer, almost certainly not enough to be completed in the time given. the bomb calorimeter is a thermally sealed environment, meaning that there is no way for heat energy to go anywhere except the surrounding water. EXTENSION TO EXPERIMENT: As an extension to the experiment, we could investigate more alcohols, even though the outcome is a forgone conclusion. Also, we could use other substances than water. They would give different results altogether, as their specific heat capacity is different. Acknowledgement: Figure 1 from www.innovescent.com Steve Smith 11SB 11P Chemistry coursework 08/05/2007 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Organic Chemistry essays

  1. Marked by a teacher

    Experiment to investigate the heat of combustion of alcohols.

    4 star(s)

    involved; the heat change in joules, which is equal for all the alcohols because they all have the same temperature change of 20o C and an equal mass of water (200cm3). Heat Change in Joules = Mass (g) x Specific Heat Capacity x Temperature Change = 200 x 4.2 x 20o C = 16800 Joules.

  2. The Combustion of Alcohols and the factors affecting these reactions

    Therefore the number of carbon atoms should be proportional to the energy released per mole. Alcohol Enthalpy (kJ/mol) Methanol 1007 Ethanol 1281 Propanol 1901 Butanol 2521 Pentanol 3141 The larger the molecule the more energy needed to break more bonds, but more energy is released when more new bonds are formed.

  1. To determine which alcohol, out of ethanol and propanol, is the better fuel. By ...

    19026 18354 11655 11172 21168 19404 9954 9366 ?Hc? (kJmol-1) -387.25 -380.31 -377.56 -364.48 -654.71 -546.59 -579.84 -617.54 ANALYSIS Here is an example of the way in which to work out ?Hc? ethanol. Using my results from the first column in my table and the equations for energy transferred and

  2. Investigating the Combustion of Alcohols

    mol =0.87g = 0.0145 mol 60 Enthalpy Change of Combustion of = Energy transferred Propan-1-ol ?HC Number of moles = -7875 J 0.0145 mol = -543103.4483 J = -543103.4483 / 1000 = - 543.1 kJmol-1 4) Pentan-1-ol - C5H11OH Mass /g Number of Repeats 1 2 3 Original Mass/g 114.86

  1. Comparing the enthalpy changes of combustion of different alcohols.

    put the thermometer into the cold water and leave for a few minutes. Record it's initial temperature. Write this into the appropriate column of the table. * Support the calorimeter making sure that the calorimeter is straight and not leaning to one side and place underneath a spirit burner containing

  2. Investigate the enthalpy change of different alcohol

    / 30.5 9.5 / / 5th trial 44 / 40 / Weight of the spirit burner (g)** Original 208.8 -0.75 164.74 -0.66 277.28 -0.24 217.46 -0.73 1st trial 208.05 164.08 277.04 216.73 Original 208.05 -0.74 164.08 -0.7 277.04 -0.37 216.69 -0.71 2nd trial 207.31 163.38 276.67 215.98 Original 207.31 -1.06

  1. 'Enthalpy of Combustion'.

    This figure is then used to calculate how much energy is produced per gram, by using this equation: Energy per Gram of Fuel (J) = Heat Transferred (J) x Mass of fuel Burnt (g) The final column on the table shows the energy produced by a mole of an alcohol,

  2. Find out how much energy is required to burn methanol, ethanol, propanol and pentanol, ...

    x 1 358 x 1 (O-O) x 7.5 497 x 7.5 (C-C) x 4 347 x 4 = 10722.5kJ mol-1 Bonds Made (C=O) x 10 802 x 10 (O-H) x 12 464 x 12 =13598kJ mol-1 Total Energy Released: 2875.5kJ mol-1 As you can see a longer molecule takes more energy to break its bonds, in this case Pentanol.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work