• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

Coursework: Effect of Temperature on the Rate of Reaction between

Extracts from this document...


Coursework: Effect of Temperature on the Rate of Reaction between Sodium Thiosulphate and Hydrochloric Acid Investigation Chemical reactions are used in our everyday life, they literally keep us alive. They are used in food, respiration and everywhere else in the environment. A chemical reaction mainly occurs when reactants react together to produce a new product. The speed at which this reaction takes place is called the rate of reaction. The product produced has a number of particles in the solution that has formed from the reactants. The concentration is the amount of particles in a certain amount of water. If a cross is placed under the beaker of the solution, the cross will eventually disappear because the high temperature of the water will make the particles move faster because they have more energy and they will move more quicker to give a bigger impact which will cause more frequent and violent collisions and the solution will disappear as the product forms to create a misty solution. The rate of reaction is normally recorded in tables and can then be defined onto graphs to show how the rate curves of different factors affect the speed of the reaction. A rate curve is the curve of a graph that shows how the reaction changes at different intervals. The gradient of the graph tells us whether the different rate curves have the same relation, meaning if they have a similar rate of reaction. Reactions can take place in a variety of customs; they can bee steep or steady. The steeper the slope, the faster the reaction takes place. The steadier the slope, the slower the reaction takes place. Aim: The aim of my investigation is to find out whether the increase of temperature increases the rate of reaction between the two reactants of Sodium Thiosulphate and Hydrochloric acid. I will then find out and evaluate on how temperature affects this particular reaction. ...read more.


I will then measure and concentrate the reactants in a measuring cylinder. 3. Once the Sodium thiosulphate and hydrochloric acid are set into two separate measuring cylinders and the 40ml of water is in the conical flask, I will start heating the water in the kettle. 4. I will place the conical flask with the water in it and the 10ml of Sodium thiosulphate, inside a beaker that has boiling water inside it. 5. Once the water and Sodium thiosulphate in the conical flask has reached its required temperature, I will take it out of the beaker and place it onto an 'X'. 6. I will add the HCl and then record the temperature using a data logger straight after I have added the Thiosulphate. I will then stir it three times and start the stopwatch. 7. I will observe the reaction and I will immediately start the watch as soon as I have mixed the reactants and stop it as soon as the ?X? has disappeared. 8. Once the reaction is finished I will take down the temperature and record it. I will also record the time taken for the reaction that lead to the 'X' disappearing to take place. It is only a complete reaction once the 'X' has completely disappeared. 9. I will record the result for each temperature three times so we can get a reliable average time at the end instead of relying on one result. This will also help us to view any errors that take place that affects the overall result. 10. I will gather all my data into clear tables and I will define my results on a graph. I will do separate graphs for each of the three experiments so I can analyse them separately, and then I will plot the averages onto one graph to compare their overall result together. In order to make a fair experiment the X should always be the same size and drawn with the same pen; ideally always the same X would be used. ...read more.


Conclusion I conclude that the temperature does affect rate of reaction - the higher the temperature the lower the rate of reaction. I can see this from my table (the lowest temperature has the highest reaction time - 100C took 77 seconds - and the highest temperature has the quickest reaction time - 650C took 4 seconds). I can also see this from my graph. This is because with more heat, the particles of sodium thiosulphate and hydrochloric acid have more energy. This causes them to move around more. Chemical reactions require collisions, and if two sets of particles are moving around quickly there will naturally be more collisions. However, the collisions require the particles to hit each other at a certain velocity, and if this velocity if not reached then the reaction will just not happen. So, at the higher temperatures, more of the particles were travelling at a high enough speed to collide and react. At the lower temperatures it was more difficult for the particles to collide. Only some were able to reach the required speed and react. At 100C the reaction took a very long time to occur. This was because there was not very much heat. Heat provides energy to the particles of reactants, and if there is not very much heat, the particles do not have very much energy. Because they do not have much energy they will not move around much, and will therefore not collide very often. Chemical reactions require a certain speed collision to react, and at this temperature very few of the particles collided, because of not moving around more due to lack of energy, because the heat was not very great. My results and evidence support my prediction very well. They prove the fact that temperature does affect the rate of reaction. My prediction was almost 100% correct, although I did not know that there would be a dramatic decrease in reaction rate on the lower temperatures. So I did make a good prediction. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Free essay

    Close Your Eyes

    She raised her hand in a little wave and turned back to reception. God she was beautiful. *Louise* My stomach flipped. I was having one of those moments. You know where your heart skips a beat and you get butterflies.

  2. An investigation into the effect of concentration on the rate of reaction. The disappearing ...

    My results from my preliminary test are as follows: Sodium thiosulphate (milliliters) (mls) Dilute hydrochloric acid volumes (milliliters) (mls) Water volumes (milliliters) (mls) Dilute hydrochloric acid concentrations (molars) (M) 1st attempt (seconds) (1.d.p) 2nd attempt (seconds) (1.d.p) 3rd attempt (seconds)

  1. Investigate the rate of a catalysed reaction, when altering the temperature of the solution ...

    At the end of each experiment, I did add a few drops of Benedict's solution into the to indicate whether there was any glucose present. Up to 40 c, the Benedict's solution indicated that there was a very high concentration of glucose in the solution.

  2. Investigate various ways of increasing the rate of a chemical reaction and evaluate which ...

    The complexity of our variables are as follows: Temperature shall be a continuous variable as we shall begin with 220c (room temperature). Concentration shall also be a continuous variable as we shall begin with 1/2 mol/litre solution. The affect of surface area shall.

  1. The effect of temperature on the rate of reaction

    As I pour them in the conical flask I will start timing till the sulphur makes precipitate causing the cross to obscure and disappear. I will experiment the time taken for the cross to disappear using variety of temperatures; 0�C, 10�C, 20�C, 30�C, 40�C, 50�C, 60�C, 70�C, 80�C, 90�C, 100�C.

  2. Find out how the rate of hydrolysis of an organic halogen compound depends on ...

    Figure 3 Indeed, any factor, which increases the number of collisions, will increase the rate of reaction. But, for most reactions, simply colliding is not enough - not every collision causes a reaction. As the particles approach and collide, kinetic energy is converted into potential energy and the potential energy of the reactants rises, as shown below.

  1. What factors effect the rate of a chemical reaction?

    80ml 1.05 1.07 1.05 1.06 90ml 1.12 1.15 1.11 1.13 100ml 1.22 1.25 1.23 1.23 70�C Trial 1 Trial 2 Trial 3 Average 10ml 0.08 0.08 0.08 0.08 20ml 0.13 0.13 0.14 0.13 30ml 0.19 0.19 0.18 0.19 40ml 0.25 0.24 0.23 0.24 50ml 0.30 0.31 0.30 0.30 60ml 0.35

  2. The effect of temperature on the rate of reaction

    There are two ways in which the magnesium oxide can be removed, both are listed below: - Dipping the Magnesium strip in the acid solution. Or - Removing the layer by rubbing it off with sandpaper. However the problem with dipping it in acid is that you then immediately have

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work