• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12

Damped Oscillation.

Extracts from this document...

Introduction

MECHANICS 4

Coursework

Work based on a combination of the Modelling and Experimental cycles

Damped Oscillation

By Jian Qin Lu

  • Introduction

Simple Harmonic Motion (SHM) is a very interesting motion. In the ideal situation the acceleration of the moving object is proportional to the distance between the object and the origin (O), and the time period of the oscillation is constant. However, in a real situation the motion doesn’t exactly behave like this. Because there is damping, it makes the amplitude of the motion decrease and finally the motion will be stopped. The whole system continues lose energy due to against the resistance (i.e. air resistance).

        Simple pendulum motion can be approximated as a SHM at a small angle (less than 170 or 0.3 radius at 2 decimal places accuracy level). Therefore it can be modelled as SHM (with the damping term).

(NB: all the time measurements in this coursework are accurate to 0.01 second.)

  • Aim

In this coursework I am going to use differential equation to model the damping of the simple pendulum motion in a thin liquid. And find the general solution of the differential equation. Also I will give the particular solution of this situation.

  • Simplifying the situation and setting up the model

Here I will list the basic data of the experiment.

  1. The mass of the pendulum bob (m) = 1kg  
  2. The length of the string (l) = 1m

3.  

...read more.

Middle

image26.png.

Dividing both sides by m and using the small angle approximationimage27.png, the equation of motion is

image28.png.

This can alternatively be written as

image29.png  or   image30.png

        In this case because image31.png is the only factor which can vary x which is the displacement from centre to the current pendulum bob location (length of the string is constant). Hence I can replace image31.png by x. The equation will looks like this: image33.png or image34.png. From this equation, we know that image35.png. In this particular coursework the length of the string I use is 1 meter long, hence image36.png where g is 9.8.

        The damped term image37.png in fact is the resistance. I did a separate experiment in order to find the resistance.

        What I did is that dropped the pendulum bob into a long tube full of water from the surface of water. I made a mark on the tube whose position is 0.2 meter from the surface of water. I would like to record the time which the ball took to cover this distance. In this experiment I assumed that the acceleration in this period is constant and the ball did not reach its terminal velocity in the 0.2 meter distance. The left hand side diagram shows the set of the experiment.image38.png

                                               In order to reduce the error, I just took the reading from the first 0.2 meter and I repeated this experiment twice.

...read more.

Conclusion

Anyhow in the experiment I did, my model worked. It can represent the motion pretty well. Therefore I consider that this differential equation is the model of this situation.

  • Assessment of the improvement

       Since my reaction time is the biggest factor which effect on the experiment, I could use some better equipment to record the time for me. The reading will be more accurate than that I gained.

       Also I can consider more factors rather than make assumptions. The model should be able to represent the real situation better.

  • Conclusion

       Through this coursework I have obtained the differential equation which models the motion of a 1kg bob with 1 meter string in the water. The differential equation is image47.png. The general solution of the differential equation is image51.png and the particular solution is image57.png. The whole is system is overdamping.

       The biggest variability in my coursework is the time measurements. It may change the parameter of the damped term. Therefore the type of damping may be changed as well. However according to the experiment, the whole system seems cannot be underdamping.

  • Reference

1. Differential Equations by Mike Jones and Roger Porkess

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Period of Oscillation of a Simple Pendulum

    By totalling together the differences between the theoretical answer and my answer, I can see how incorrect the results are as an average. On average, the results are out by -0.0675 seconds. This is only a small amount of time, however, if I had my answers exactly the same as the theoretical answers, then the total would equal zero.

  2. In this experiment I aim to find out how the force and mass affect ...

    losing their energy on the surface of the ramp - but this effect is only very slight. If we were to conduct this experiment in a place with no air resistance and no friction, we would see that the speed of the trolley stayed perfectly constant as mass plays no

  1. The determination of the acceleration due to gravity at the surface of the earth, ...

    This would reduce the risk of human error in counting. Errors and Actions taken to minimise them There was one particular problem that I came across when trying out my intended method in my preliminary experiment. This would cause an error in the results.

  2. Investigating the amazingness of theBouncing Ball!

    amount of kintetic energy and therefore does not reach its original height. Howerver the relative velocity with which two bodies separate from each other, after a collion, is related to their relative velocity of approach and a constant known as the 'coefficient of resitution'of the two bodies.

  1. Mechanical Properties of a Meter Rule

    Once some weights were added the set up looked unstable and dangerous as the rule started to twist. This could have been because the clamps were no tightened at the same strength. 4. Once the weights were added, the level of deflection appeared to be different.

  2. In this Coursework, we were given the task of investigating some factors which affect ...

    The formula is: T = 2?? l / g T = period l = length of string g = gravitational acceleration (approx. 9.81) This formula does not provide a proportional relationship due to the existence of the ?. Therefore with this formula, a graph like the one below will be

  1. report on glass

    AD 100 The first people to use glass for an architectural purpose were the Romans. With the discovery of clear glass through the introduction of manganese oxide. Cast glass windows with poor optical qualities, then began to appear in the most important buildings in Rome.

  2. Runny Oils Coursework

    When marking the finish point we took this into consideration and marked the finish point accordingly, 1.5cm up from the bottom of the tube. This was so that when we dropped each ball bearing in the same oil we wouldn't have to keep tipping all the oil out to get the ball bearing out each time.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work