• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Determination of Relative atomic mass of lithium

Extracts from this document...

Introduction

Assessed Practical 3 Determination of Relative atomic mass of lithium Jared Ching Evaluation: In general the accuracy of the experiments was good. However with practice, the accuracy could be improved; accuracy being how close the results are to the real answer. I think I have carried pit the experiment as well as I possibly could at the time with the given conditions and time period allowed. I have gained precise results from the practical. However, looking back at the analysis section, the relative atomic mass values I found were not exactly 6.9 as presented in the periodic timetable. Method (1) gave me 8.28; a difference of 1.38 and method (2) gave me 7.37, a difference of 0.43 to the real/reference value. Therefore method (2) proved to be more accurate. Overall the results were good and came close to the real values. There were no anomalous results. Limitations: The main sources of error that I found to be evident and which were out of my control were as follows: * In method (1), due to the oil that lithium is stored in, not only ...read more.

Middle

I also found that the reacted solution sometimes returned to a slight pink colour even after turning completely colourless. Thus this caused inevitable error. Accuracy and reliability: In method (1) the procedure was very accurate; the equipment used is very accurate, however as mentioned before, the gas lost when replacing the bung caused a degree of inaccuracy. As shown by the results, with the relative atomic mass found to be +1.38 over. In method (2) not only were the results accurate but also precise. The final relative atomic mass coming out as only +0.43 over the reference value proves a high degree of accuracy. Looking at the results table, the three accurate titrations fall within 0.1cm3 and 0.3cm3 of each other, which is a very concurrent set of results. Clearly method (1) and method (2) differ in accuracy and precision. Method (1) is clearly less accurate and precise as the gas collected from the reaction of lithium and water was not exact as hydrogen was lost in the process. ...read more.

Conclusion

Due to the fact that the colour change and when to stop the tap is not very obvious, more indicator should be used in order to make the more subtle changes in colour more visible. The burette tap should be opened at full until there is a small change in colour, then the tap should be closed slightly so that only drops of acid are coming through, this will improve accuracy as it will be clearer when the reaction is complete, thus more concurrent results will be produced. Clearly there is also a need for a control, although it was initially thought that it was very obvious when the solution turns colourless, this practical has shown that a control would be useful to compare the colours. However the other problem of the solution returning to a slight pink colour can be eliminated by waiting for this to occur, and when it does, titrate it further opening the burette very slightly, allowing acid to be added more slowly into the solution. Carrying out titrations is a skill that develops with practice, more repetitions will lead to improved results, both in accuracy and precision. Both methods are the most accurate, considering the equipment available. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Determine the relative atomic mass of lithium.

    From that we can deduce the number of moles of lithium hydroxide used in the titration. To do this I have to work out the mole ratio of the lithium hydroxide and the hydrochloric acid. To get the mole ratio we would need to examine the formula of the reaction.

  2. to determine the relative atomic mass of lithium. We will be doing this via ...

    * Percentage errors can be reduced by scaling up quantities or use of equipment which have smaller divisions. For example a small measuring cylinder has smaller divisions and so would be more accurate than a larger measuring cylinder with larger divisions, consequently reducing percentage errors and increasing accuracy in the readings made.

  1. Determination of the Relative Atomic mass of Lithium

    that we could only measure accurately to �1cm3 which could definitely affect our results. When weighing out the pieces of Lithium metal, we had to dip the lithium in ether to remove the layer of oil to supposedly prevent air from getting to the lithium, we then had to clean off the ether on a piece of filter paper.

  2. Investigation to determine the relative atomic mass of lithium

    although we were not too far off as you can see. for method 1 we obtained 7.1 and for method 2 we obtained 7.3cm. Also in method 2 I had my two titre values were very similar and 0.3 off, although one titre value (which was the trial run)

  1. Determination of the relative atomic mass of lithium.

    = 7.468 x 10-3 moles Using this result I can now calculate the relative atomic mass of lithium. For this I must go back to the chemical equation from Method 1: 2Li(s) + H2O(l) � 2LiOH(aq) + H2(g) The mole ratio of lithium to lithium hydroxide is: 2:2 This means

  2. Determination of the relative atomic mass of Lithium

    to be beyond the actual Ar of lithium (6.9), are: * The specified amount of lithium supposed to be used was 0.10 grams. I think the fact that I received a piece of lithium that was of 0.11 grams, caused the measured relative atomic mass of lithium to increase because

  1. Determination of the relative atomic mass of lithium.

    M = the mass of the material or substance. Mr = the relative molar mass. However in using this formula I found that it may not work properly. So I need to re - arrange the formula to get it to suite my needs because I am figuring out Mr (basically the atomic mass).

  2. To determine the relative atomic mass of Lithium

    I took the measurement of the hydrogen produced and it was exactly 190cm3. The remaining substance in the conical flask is Lithium Hydroxide, which I'll be using for the next way to find the relative atomic mass of Lithium. The balanced equation below shows the reaction between Lithium and distilled water.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work