• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5

# Determination of the relative atomic mass of lithium.

Extracts from this document...

Introduction

Determination of the relative atomic mass of lithium Introduction As part of my AS chemistry unit, I was given an assessed practical to do. The aim of this practical is to determine the relative atomic mass of lithium. I will do this by the combination of two different methods. Method 1: - By measuring the volume of hydrogen produced Method 2: - By titrating the lithium hydroxide produced Method 1 I set up my experiment as previously shown with the correct size equipment in the correct places. But before I began the actual practical part of the assessment, I had measure the amount of lithium I had. Lithium is reactive with air, so I had to measure it in a specific way. Firstly I sliced an appropriate part of lithium with a knife and put it in a Petri dish. I then weighed the Petri dish occupied by the lithium which was 3.40g and to calculate the amount of lithium I had, I weighed the Petri dish on its own which turned out to be 3.31. Finally I subtracted the weight of the Petri dish and lithium by the weight of the Petri dish which resulted in its own. ...read more.

Middle

During the titration, I kept 25.0 cm3 of the solution from method 1 in a conical flask and added 5 drops of phenolphthalein indicator, as I did this the solution turned a fluorescent pink colour. I then had to titrate the solution with 0.0100 mol dm3 of aqueous hydrochloric acid to see how much acid was needed to turn the solution from a bright pink colour, back to a colourless solution. The concluded results were: - Amount of HCL at start = 28 Amount of HCL at end = 42.15 So the amount of HCl used is the amount at the start minus the amount at the end. 42.5 - 28 = 14 .3 cm3 (Start) (End) (Result) LiOH (aq) + HCl (aq) LiCl (aq) + H2O (l) I will now attempt to work out the technical parts to method 2. * Calculate the number of moles of HCl use in the titration. Number of moles of HCl = 0.1 � 14.3 = 0.00143 1000 The number of moles of hydrochloric acid (HCl) used in the titration is 0.00143 * Deduce the number of moles of LiOH used in the titration. The number of moles = 0.00143 � 10 = 0.09 0.00143 = 6.29 The number of moles of LiOH used in the ...read more.

Conclusion

But in method two, I was titrating so I had to look at the liquid and construe how much acid was needed. This is not very accurate because you have to estimate and different people have different eye sights which affects it. Another factor is the temperature. If we kept the temperature of the room constant at about 20-25 o C, the results would be more accurate. To prevent the errors we could minimise reactions between lithium and air, by putting lithium in an organic solvent such as cyclohexane which won't react with the lithium. Another factor is that in the beginning part of the investigation we could put the bung on quicker to prevent any hydrogen gas escaping. Better measuring cylinders, measuring balances and more accurate pipettes would help too. Also in method two instead of deducing the end point of the reaction by human eyesight, we could accurately measure the end point by some sort of colour receptor. Anther detrimental factor is the batch of lithium used. If the lithium has aged then some or most of its reactivity may be lost. Ali Omar Page 1 Determination of the relative atomic mass of lithium ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Aqueous Chemistry essays

1. ## Determination of the relative atomic mass of lithium.

= 7.468 x 10-3 moles Using this result I can now calculate the relative atomic mass of lithium. For this I must go back to the chemical equation from Method 1: 2Li(s) + H2O(l) � 2LiOH(aq) + H2(g) The mole ratio of lithium to lithium hydroxide is: 2:2 This means

2. ## Determination of the relative atomic mass of magnesium by back titration

* Rinse apparatus with distilled water, and then with the solution being used * Remove the funnel when titrating * Ensuring the value of the pipette is read at eye level * Movement during transferring should be kept at a minimum * Allowing it to drain under gravity * When

1. ## Determination of the relative atomic mass of lithium.

As a source of error, weighting of lithium will not be accurate because of the following reasons. Firstly, removing all traces of the oil was difficult for a number of reasons. The oil might not have been removed there was no way of distinguishing this apart from the human eye.

2. ## The Determination of an Equilibrium Constant.

2 3 4 Initial burette reading 0 17.4 0 0 Final burette reading 17.4 34.4 33.6 7.4 Titre /cm3 17.4 17 33.6 7.4 RUN 2 Solution in flask Equilibrium mixture Solution in burette Sodium hydroxide 0.2mol/dm-3 Indicator Phenolphthalein Experiment 1 2 3 4 Initial burette reading 8 25.4 0 33

1. ## Determination of the Relative Atomic Mass of Lithium

Lithium is at the top of group 1 so although it is not as reactive as the other metals in that group, it still reacts vigorously with water. Because Lithium reacts with air, it had to be kept in oil to stop it reacting.

2. ## Determination of the relative atomic mass of lithium.

So to help me do this I will use the triangle for this formula. m n Mr Now using this triangle I can get the equation that I need to calculate my result (the relative atomic mass). If I want to figure out the Mr, then what I do is look at the other letters.

1. ## Determination of the Relative Atomic Mass of Lithium

Then I will pipette 25cm3 of the solution from experiment 1 into a clean conical flask. 4. I will add 5 drops of phenolphthalein indicator to the solution in the flask. 5. I will titrate the solution with the hydrochloric acid and record the results.

2. ## Determining the relative atomic mass of lithium

helped the reliability of the results. Procedural errors: Firstly the lithium. Exposure to oxygen in the air forms a layer of lithium oxide that coats the sample and when put in the water will affect the amount of lithium hydroxide produced.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to