• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

Determine the effect of temperature upon respiration of Yeast.

Extracts from this document...


Group number: 2 Yeast Investigation PLAN Aim: To determine the effect of temperature upon respiration of Yeast. Prediction: I predict that the respiratory rate of the yeast will increase in speed as the temperature of the water increases. However, it may reach a peak, and slowly decline as the temperature increases further. My reason for the above prediction is that, anyone who has cooked, knows that yeast is supposed to respond in warm water, so I believe that the warmer the water, the more bubbles of CO� produced. Also, the oxygen produced in the initial stages of the experiment will allow the speed of reaction, of converting glucose to energy, to increase additionally. It will decrease once all the material has reacted, and/or because the temperature is too high for the yeast to respire as the heat has denatured the yeast's enzymes and they can no longer fit their substrate, and therefore decreasing their capability to work. Method: The yeast is put into a glucose solution, this is because the glucose provides the energy for the yeast to respire. We will take 7 readings of heated water (starting with 10�c), each with a 10�c interval, and observe how many bubbles of CO� each temperature allows the yeast, placed in the beaker of water, to produce. ...read more.


If we had continued with the experiment using higher temperatures, we wouldn't have had any CO� bubbles being produced. Between the temperatures of 10�C and 40�C, the graph shows that the yeast respires rapidly , producing more CO� than between the temperatures of 40�C and 70�C, where the level of CO� produced decreases.� Therefore, the yeast respires at its best, proved by our results, when the solution of yeast and glucose is at 40�C. There is a big difference between the amount of CO� produced between 10�C-20�C and 20�C-30�C. There is a lower rate of reaction for the first process of the experiment, this could be because there is not enough energy given for the enzymes to work as the temperature is too low. The change in the second process of the experiment is caused by the oxygen produced in the initial (first process) stages of the experiment. It allowed the speed of reaction, of converting glucose to energy, to increase as the glucose molecules became more plentiful as the concentration increased, so the probability that the yeast enzymes will come into contact and react with the molecules is higher. Before 40�C the rate of reaction increases gradually :- all the enzymes are protein chains of amino acids, along the chains, there are active sites where contact between the enzyme and its substrate take place. ...read more.


We handled the experiment carefully and with detail so that we could be satisfied with what results we would obtain. Factors that had an affect on the experiment were: doing the whole experiment in several days, the room temperature or apparatus used could have been different and so, not making it a fair test. Also, the percentage of glucose in the yeast affected the experiment because, on different days, there might have been more/less glucose than in the former experiment, which had been performed on a different day. The depth of the test tube in the beaker affected how many bubbles could be released. To improve this and thus, our results, we should have done the experiment in one day, using the same apparatus throughout. We could have made sure that the test tube was at the same, certain depth in the beaker of water for each experiment and made sure that the solution of yeast and glucose had been properly mixed. Also to check all results, performing the experiment even more times and in better circumstances away from being disturbed would increase the certainty of the results produced. I think that further research on Yeast and how the experiment should have been performed and carried through in class would have helped me to understand exactly how the experiment worked and what could be obtained from it, hence, making me more confident concerning my attitude towards the experiment and understanding exactly what to do. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. The effect temperature has on the rate of anaerobic respiration in yeast.

    If I used a kettle or Bunsen burner to heat my water then the temperature would not be consistent and only stay at one temperature for a certain amount of time. I also used a measuring cylinder to measure the amount of carbon dioxide instead of counting the bubbles that leave the syringe.

  2. What is the effect on the rate of respiration of yeast cells with glucose ...

    Beyond 40�C the amount of carbon dioxide collected within the set amount of time will start to decrease. At around 60�C the rate of respiration will rapidly decrease, having collected only a very small volume of carbon dioxide gas. This is due to the enzymes involved being denatured.

  1. Investigating the effect of concentration of sugar on the respiration rate of yeast

    Results: Number of CO2 bubbles released per min 1 2 3 4 5 1 *16 18 14 10 14 2 23 16 15 12 16 3 24 15 17 12 13 4 23 15 16 10 12 5 23 12 16 14 12 Average 23 15 16 12 13 *

  2. An Investigation into the Effect of Temperature on the Rate of Respiration in Yeast.

    3. On the conical flask place on the rubber bung that is shown on the diagram showing how the experiment was set-up. 4. You then take the end of the tube from the bung in the conical flask in

  1. An investigation of the factors that affect the rate of respiration in Yeast.

    And they were arranged in this order. * Fair Testing In order for this to be a fair experiment quantities of each substance must be measured and the kept the same throughout the experiment except for the variable in which I am testing temperature.

  2. Investigating respiration in aged yeast

    To be able to collect valid data I'll measure everything very well and I'll be careful not to make mistakes; if I suspect that something is not exactly the amount needed, or the temperature required, I'll check again and make all the adjustments necessary.

  1. Experiment to show the factors that effect the respiration in yeast

    I timed the amount of oxygen gas coming out of the Boiling Tube and through the delivery tube and out of the test tube, forming bubbles for 1minute. I repeated this 3 times and my results show that the amount of bubbles has risen.

  2. The rate ofrespiration in yeast and how it is affected by temperature.

    If any of these factors were to change, the experiment would not be a fair test. The factor under investigation can be varied, but the others must all be left constant. What am I going to do? Preliminary work: In this experiment, the mixture will need some time to equilibrate.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work