• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

Determining Gravity with a Pendulum

Extracts from this document...


        SPH141        Practical 2

Practical Experiment 2

Determining Gravity with a Pendulum


To determine the local acceleration due to gravity using Galileo pendulum technique.


Gravity is a force that acts on Earth every day. Sir Isaac Newton was first to underline the principles of gravity when an apple fell on his head (Ashbacher 2002). He stated that each particle with a mass attracts all other particles with mass with a gravitational force that is directly proportional to the product of their masses and inversely proportional to their distance of separation squared (Ashbacher 2002).

This is due to that gravity acts between objects (Ashbacher 2002), consequently causing a force of attraction which pulls the two object together, such as that an object with a mass will fall down towards earth ground. The Earth’s mass creates a gravitational force, which pulls the object down towards Earth.  

This theory is also supported by Newton’s three law of motions, particularly the first law stating that, ‘an object in motion or at rest will remain in motion or at rest unless acted upon by an external fore‘. An object will remain at rest floating in the air, however since an external force, gravity, acts upon it, the object falls towards Earth.

Theoretically, the acceleration due to gravity on Earth is 9.8ms-2

...read more.


















Resolution                Ruler – 0.1cm                Stop Watch – 0.01s


Calculating the gravitational acceleration

T = 2π

T = 2π

g =

Calculating Gravitational Acceleration for 0.30m

10.8s per 10 pendulum swing cycle = 1.08s per pendulum swing cycle

L = 0.30m and T = 1.08s

g =

g = 10.2ms-2

Calculating Gravitational Acceleration for 0.60m

15.7s per 10 pendulum swing cycle = 1.57s per pendulum swing cycle

L = 0.60m and T = 1.08s

g =

g = 9.6ms-2

Calculating Gravitational Acceleration for 0.90m

19.0s per 10 pendulum swing cycle = 1.90s per pendulum swing cycle

L = 0.90m and T = 1.90s

g =

g = 9.8ms-2

Calculating Uncertainties for the gravitational acceleration

0.30m Pendulum

Since T = 10.8 and L = 0.30, the uncertainty for T = 10.8s ± 0.05s and L = 0.30m ± 0.05m

 Highest value for the gravitation acceleration using 0.30m pendulum is;

L = 0.30m + 0.05m

= 0.35m  

T = 10.8s – 0.05

=10.75s per 10 cycles

g =

where L = 0.35 and T = 1.075s per cycle

g =

g = 11.9ms-2

 Lowest value for the gravitation acceleration using 0.30m pendulum is;

L = 0.30m - 0.05m

= 0.25m  

T = 10.8s + 0.05

=10.85s per 10 cycles

g =

where L = 0.25 and T = 1.085s per cycle

g =

g = 8.4ms-2

0.60m Pendulum

Since T = 15.7 and L = 0.60, the uncertainty for T = 15.7s ± 0.05s and L = 0.6m ± 0.05m

 Highest value for the gravitation acceleration using 0.60m pendulum is;

L = 0.60m + 0.05m

= 0.65m  

T = 15.7s – 0.05

=15.65s per 10 cycles

g =

where L = 0.65 and T = 1.565s per cycle

g =

g = 10.5ms-2

 Lowest value for the gravitation acceleration using 0.

...read more.



The acceleration due to gravitation was determined to be 10.2ms-2, 9.6ms-2 and 9.8ms-2 for the pendulum measurements of 0.30m, 0.60m and 0.90m. This shows that the aim f the experiment was achieved through the conduction of the experiment. Though, the theoretical acceleration due to gravitation on Earth is determined to be 9.8ms-2, in which it was found that by using the 0.90m, the exact value could be calculated. However there were some errors involved such as the parallax error, but within all trials, the acceleration due to gravity of each individual was within the highest and lowest uncertainty range. An improvement was suggested in regards to the errors and that was to use a longer pendulum to reduce the pendulum cycle time. Overall the experiment was followed according to the method, and the result obtained had a percentage error less than 10%, hence the results are considered acceptable.


Ashbacher, C 2002, ‘Sir Isaac Newton: The Gravity of Genius’, Mathematics & Computer Education, vol. 36, no. 3, pp. 302-310, viewed 5 September, via Education Research Complete

Houston, K 2012, ‘The Simple Pendulum’, College Physics, vol. 1, no.1, pp.1-4, viewed 5 September, <http://cnx.org/content/m42243/latest/?collection=col11406/latest>


Diagram 1.1

Experiment Set Up

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The Simple Pendulum Experiment

    4 star(s)

    The reaction time ruler is accurate to within �0.005s. Reaction time Experiment Results Measurement 1 = 0.26s Measurement 2 = 0.16s Measurement 2 = 0.18s Average = (0.26+0.16+0.18) � 3 Average Reaction Time = 0.2s Length Experiment The set-up of the apparatus for this experiment is included on a Page

  2. Determination of the acceleration due to gravity using a simple pendulum.

    could be affected by human error in recording or calculation of the results. Also drawing a T2 graph illustrates that the graph is exponential as it produces a straight line. This also shows that length is directly proportional to T2.

  1. Determining the acceleration due to gravity by using simple pendulum.

    of pendulum. Divide this time by 20 to get a value for the average periodic time (T) of the motion. By using these averaging techniques it minimizes random errors.

  2. Period of Oscillation of a Simple Pendulum

    Theoretically, the answer should remain the same at whatever angle because a) the pendulum has a greater speed to travel as the release angle increases, but there is an increased distance to travel so the time should remain the same.

  1. Investigating the period of a simple pendulum and measuring acceleration due to gravity.

    * If the apparatus are placed to close to the edge of the table then there is a high chance of it falling off the table and onto somebody legs'. This could hurt that individuals leg and so as not to cause any physical harm the clamp should be placed away from the edge of the table.

  2. Measuring Acceleration due to Gravity using a simple Pendulum.

    Percentage errors Percentage error of the length = 0.001 x 100 length Percentage error of the period = 0.01 x 100 period Length(m) Length(% error) T(% error) g(% error) 0.100 1.00% 1.46% 3.92% 0.200 0.50% 0.98% 2.46% 0.300 0.33% 0.86% 2.05% 0.400 0.25% 0.72% 1.69% 0.500 0.20% 0.66% 1.52% 0.600

  1. In this experiment I aim to find out how the force and mass affect ...

    I have worked out using the sin function how high the ramp has to be for a 5�, 10�, 15�, 20, 25� and 30� angle. The length of the ramp is 124.8cm. 124.8 sin 5� = height (10.9cm) 124.8 sin 10� = height (21.7cm) 124.8 sin 15� = height (32.3cm)

  2. The determination of the acceleration due to gravity at the surface of the earth, ...

    / Vg. This however, would not produce a linear graph and so calculating the gradient would be more difficult and ambiguous than if using a linear graph. So for the theory of the simple pendulum: To obtain a linear graph, take the squared equations which enables g to be deducted when plotting T� against L.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work