• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Determining the relative atomic mass of lithium

Extracts from this document...

Introduction

Assessed practical- Determining the relative atomic mass of lithium o Hazards of chemicals used and obtained: Method 1- 2Li(s) + 2H2O(l) � 2LiOH(aq) + H2(g) Method 2- LiOH(aq) + HCl(aq) � LiCl(aq) + 2H2O(l) In method 1 hydrogen gas is produced. This is flammable and although not a lot will be produced it would be safe to keep the product away from open flames, sparks, etc. The product of the second method, lithium hydroxide, is alkaline and an irritant. When handling it care should be taken and if it is spilt all of it should be cleaned up immediately. Although not hazardous to us the lithium is very reactive and is used in small quantities. Also precaution must be taken in order to get accurate results, as with the distilled H2O that may become contaminated. In method 2 hydrochloric acid is used and although it only has a concentration of 0.1mol dm-3 care must be taken so it isn't spilt or brought into contact with skin, as it is an irritant. ...read more.

Middle

So; moles of HCl used in the titration = concentration � volume = 0.1000mol dm-3 � 36.03 dm3 1000 = 3.603�10-3 moles As 1 mole of LiOH reacts with 1 mole of HCl, [LiOH(aq) + HCl(aq) � LiCl(aq) + 2H2O(l)] then 3.603�10-3 moles of LiOH were used in the titration. Only 25cm3 of the LiOH solution at a time during the titration, so the number of moles in the 100cm3 solution from method one = 4 � 3.603�10-3 = 0.0144moles. Therefore, the relative atomic mass of lithium = moles = 0.1000g = 6.94g mol-1. 0.0144dm3 o Evaluation: Overall my results are quite accurate and in the case of method two correct, when rounded to three significant figures. In my calculations I used four significant figures in order to improve accuracy, and by using the average of three titrations (all within one decimal place of each other) ...read more.

Conclusion

Ideally a polarized, un-reactive solution should be used instead. Another measurement error is the resolution of the apparatus used; the scales measured to the nearest 10mgram, the burette measured to the nearest 1cm3 whilst the measuring cylinder to the nearest 2cm3. With a higher resolution method two will have more accurate results. The most significant measurement error is the amount of gas given off in method one. Aside from the procedure the measurement can be modified to reduce the error: H2 gas produced = 172cm3 � 1cm3 (as the resolution is to the nearest 2cm3). Minimum possible value: 171cm3. Relative atomic mass of lithium: 171/24000 = 7.125�10-3moles. 7.125�10-3 � 2 = 0.01425moles. 0.1/0.01425 = 7.02g mol-1(3s.f). Maximum possible value: 173cm3. Relative atomic mass of lithium: 173/24000 = 7.208�10-3moles. 7.208�10-3 � 2 = 0.0144moles. 0.1/0.0144 = 6.94g mol-1(3s.f). ROB HENDERSON ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Determination of the relative atomic mass of lithium.

    + 2H2O(l) 2LiOH(aq) + H2(g) If a known mass of lithium is dissolved in water, the volume of hydrogen produced can be used to calculate the relative atomic mass of lithium. This will be the basic thesis for experiment 1.

  2. How much Iron (II) in 100 grams of Spinach Oleracea?

    used in the titration I need to divide the volume of moles by 3 and then multiply it by 5. 0.00018175 mol dm-3 x 5 = 0.000302916 mol dm-3 3 Now that I know the mols of Iron (II) present in 5 cm3 of spinach extract solution I can use this to work out the moles of Iron (II)

  1. Determination of the relative atomic mass of lithium.

    If the gaps are not air tight, then the hydrogen will escape by a small amount. Even though it would have only been a small amount of hydrogen escaping, it would affect the results the most. This is because the actual amount of gas I am trying to measure is escaping.

  2. Determination of the Relative Atomic Mass of Lithium

    References for the Relative Atomic mass: From Britannica Encyclopaedia 2001: Natural lithium exists as two isotopes: lithium-7 (92.5 percent)

  1. to determine the relative atomic mass of lithium. We will be doing this via ...

    They can never be eliminated entirely but reducing them increases the precision of the final result.

  2. Determination of the relative atomic mass of Lithium

    Use a pipette to accurately measure 25.00 cm of the solution of lithium hydroxide. Place it into a 250 cm conical flask and add 5 drops of phenolphthalein indicator. 2. Set up the apparatus accordingly (as shown below). 3. Titrate this with 0.100 mol dm of hydrochloric acid.

  1. Determination of the Relative Atomic mass of Lithium

    of HCl to be 10.95cm3 as I found from the experiment that I had 2 titrations where 10.95cm3 was the answer, so therefore the average is 10.95 cm3 LiOH + HCl LiCl + H2O Ratio 1 1 1 1 Volume (cm3)

  2. Determine the relative atomic mass of lithium.

    The c stands for the concentration of the substance and the v stands for the volume. The number of moles present in the lithium hydroxide can be worked by using the ration of acid and base in the reaction. As I've mentioned earlier when the titration process is carried out

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work