• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Do Elastic Bands Obey Hooke Law

Extracts from this document...


Do Elastic Bands Obey Hooke's Law? Aim; To plan an experiment to investigate if elastic bands obey Hooke's Law Prediction; The elastic bands do obey Hooke's Law Equipment; * Clamp stand * Rubber band * 50g weights * Ruler * Clamp Method; * Take one rubber band at random and attach it to a clamp * Measure the length of the rubber band and record the length * Add weights to the rubber band (50g each time) * After each weight is added record the length of the rubber band * Keep adding the 50g until the rubber band snap or deforms Variables; * Weight of the weights Controls; Rubber band * Height of clamp stand * Start point of measuring the length ...read more.


42.7 850 8.5 43.4 900 9 44.1 950 9.5 48.9 1000 10 50 1050 10.5 53.5 1100 11 Graph; Conclusion; This experiment has proven to me that a stretched rubber band does not apply to Hooke's Law. This is backed up with the results I have collected and the gradient of the graph I have drawn. If a stretched rubber band was to apply to Hooke's Law then the length it is stretched would be proportional to the weight exerted. For something to apply to Hooke's Law it must apply to the following statement. For Hooke's Law gives the relationship between the force applied to an un-stretched object and the amount the spring is stretched when force is applied to it. ...read more.


This first thing is the mistake of inaccurately measuring the length of the rubber band. Since the rubber band is bouncing around it is difficult to measure from the same starting point each time. Also since the rubber band is bouncing around it is hard to find the exact length of the rubber band, so I would have to approximate between numbers. This is one of the main causes of differential length results. Another point is that each elastic band has different elasticity. So if I were to carry out this investigation with a different rubber band I would expect to get different results. If I were to do this investigation again I would attach the ruler to the clamp stand for more accurate results, this is what I failed to realize the first time around. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

3 star(s)

This is a 3 star piece of work. There is a base to build on. The practical method would give valid results. The evaluation could be improved upon by talking about more ways to improve on the method used.

Marked by teacher Kate Gardiner 01/12/2012

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The aim of this experiment was to compare the elasticity of arteries and vein ...

    4 star(s)

    The sketch below reiterates this method. The first experiment that had to be carried out was to test the elasticity of the artery by adding weight. This was done by setting up the apparatus as described above. The length of the artery, before any force had been applied, was then recorded (this involved removing the mass carrier).

  2. How does the weight of an object affect the friction it has on the ...

    Weight = mass x gravitational force Weight = R, mass (kg), g =9.8 Sand Paper (P60E) Mass of block of wood (g) Average force needed to overcome Static friction (N) (1dp) Weight (R) = Mass x gravitational force (2dp) 325 2.8 4.19 475 3.4 4.66 625 5.1 6.13 825 6.2

  1. The Physics of Paper Helicopters

    = m ln(mass) + c (but ln(time) = 1.24, ln(mass) = 1.5, and m = -0.97) ==> 1.24 = -0.97 x 1.5 + c ==> c = 2.695. Therefore, n = -0.97 and 2.695 = ln(K) ==> K = e2.695 = 14.806 Therefore, the relationship that we have derived is: Time = 14.806

  2. Helicopter Investigation.

    the greater the velocity (in this case terminal velocity). Since u is always 0 in our experiment, this does not influence the relationship between the time taken to reach terminal and terminal velocity, and the above reasoning still holds. However I predict that our experiment will support the law V=

  1. How does an increased surface area change the time taken for a mass to ...

    The right angled triangle is used to keep the rulers at right angles to the ground so no anomalous results appear due to the rulers not being straight. * Place the large cup cake on the balance.

  2. Practical Investigation into the Horizontal motion of a Projectile

    Safety With an experiment of this nature there are not many safety factors to consider. However, I ensured that I conducted the experiment where nobody could slip on the paper on the floor, and attached all apparatus such clamps to the table securely.

  1. Investigation is to see how changing the height of a ramp affects the stopping ...

    It should have been the other way round because as I have predicted the greater the height of the ramp the greater the stopping distance and velocity and therefore as 9cm is greater than 8cm it should have a grater velocity and stopping distance when the ramp is 9cm high.

  2. Report on Newton's laws of motion

    These observations discussed earlier in the experiment are summarized in Newton?s second law which states that, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass (Hewitt, 2010). Newton?s second law of motion is considered as the most important

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work