• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15

Draw stress and strain graphs for the metal copper and the alloy constantan. Calculate the figures of young's modulus for copper and constantan. Discuss the physics involved.

Extracts from this document...

Introduction

AS Physics Data Analysis coursework

        This coursework assignment requires me analyse and evaluate data on copper and constantan given to me. It entails investigating the young’s modulus of the metal and alloy. Thus I will use many methods during to complete my investigation.

Aims:

  1. To draw stress and strain graphs for the metal copper and the alloy constantan
  2. To calculate the figures of young’s modulus for copper and constantan
  3. To discuss the physics involved

Plan:

        In this investigation I have received results for extension of copper and constantan for certain forces applied to it, for which I will analyse and calculate the young’s modulus. The results I have been given are forces applied to copper and constantan, three sets of results for the metal and alloy and this can be used by averaging data to give more accurate results thus these results given to me will be used to create graphs, calculate young’s modulus and analyse data for both metals so I can complete my investigation.

        I will need to draw a force and extension graph for both copper and constantan, the extension shown will be the averaged value for each metal. I will also calculate the stress and strain values and plot this on a graph for both copper and constantan, I will plot these on the same graph and analyse the graph, hence I can find any patterns from the data and this will require me to draw my graphs accurately so I can correctly analyse the results to make judgements and conclusions.

        I will use Microsoft Excel spreadsheet program to make tables of data, with the data I have been given. I will be using formulas to calculate average extension, stress, strain and young’s modulus for copper and constantan.

...read more.

Middle

1.000E-03

1.000E-03

2.000E-03

1.33E-03

3.720E+07

6.35E-04

5.86E+10

6

3.000E-03

2.000E-03

3.000E-03

2.67E-03

5.580E+07

1.27E-03

4.39E+10

8

4.000E-03

3.000E-03

3.000E-03

3.33E-03

7.440E+07

1.59E-03

4.69E+10

10

5.000E-03

4.000E-03

4.000E-03

4.33E-03

9.301E+07

2.06E-03

4.51E+10

12

6.000E-03

5.000E-03

5.000E-03

5.33E-03

1.116E+08

2.54E-03

4.39E+10

14

7.000E-03

5.000E-03

5.000E-03

5.67E-03

1.302E+08

2.70E-03

4.83E+10

16

9.000E-03

6.000E-03

6.000E-03

7.00E-03

1.488E+08

3.33E-03

4.46E+10

18

1.100E-02

7.000E-03

1.000E-02

9.33E-03

1.674E+08

4.44E-03

3.77E+10

20

1.600E-02

1.000E-02

1.200E-02

1.27E-02

1.860E+08

6.03E-03

3.08E+10

22

2.200E-02

1.500E-02

4.500E-02

2.73E-02

2.046E+08

1.30E-02

1.57E+10

24

9.600E-02

3.200E-02

1.400E-01

8.93E-02

2.232E+08

4.25E-02

5.25E+09

26

BROKE

4.300E-02

BROKE

4.300E-02

2.418E+08

2.05E-02

1.18E+10

28

BROKE

BROKE

BROKE

BROKE

BROKE

BROKE

BROKE

Table 1

CONSTANTAN

Force (N)

Extension (m)

Extension (m)

Extension (m)

Average Extension (m)

Stress (Pa) F/A

Strain (Ratio) E/L

Young's Modulus

0

0

0

0

0.00E+00

0.00E+00

0.00E+00

0.00E+00

2

0

0

0

0.00E+00

2.08E+07

0.00E+00

0.00E+00

4

2.00E-03

1.00E-03

1.00E-03

1.33E-03

4.16E+07

6.35E-04

6.55E+10

6

3.00E-03

1.00E-03

1.00E-03

1.67E-03

6.24E+07

7.94E-04

7.86E+10

8

4.00E-03

2.00E-03

2.00E-03

2.67E-03

8.32E+07

1.27E-03

6.55E+10

10

4.00E-03

3.00E-03

3.00E-03

3.33E-03

1.04E+08

1.59E-03

6.55E+10

12

5.00E-03

3.00E-03

4.00E-03

4.00E-03

1.25E+08

1.90E-03

6.55E+10

14

5.00E-03

4.00E-03

5.00E-03

4.67E-03

1.46E+08

2.22E-03

6.55E+10

16

6.00E-03

4.00E-03

5.00E-03

5.00E-03

1.66E+08

2.38E-03

6.98E+10

18

8.00E-03

4.00E-03

5.00E-03

5.67E-03

1.87E+08

2.70E-03

6.93E+10

20

8.00E-03

4.00E-03

6.00E-03

6.00E-03

2.08E+08

2.86E-03

7.28E+10

22

8.00E-03

5.

...read more.

Conclusion

I have concluded that my prediction was correct as this was shown by my calculations and can be seen in the graphs I have drawn that constantan has a higher young’s modulus than copper.

I will now evaluate the accuracy of the data given to me and calculations I have made myself. I have set the my percentage error to be 5%, so if the percentage error is above 5% then I believe this is not accurate enough for an A-level experiment.

Percentage error in measurements

% error=

(Error in measure/measurement) x 100

Area of wire

Smallest measurements: 0.005x10-3m (Micrometer) and 0.35x10-3m (smallest recorded measurement).

    (0.005x10-3/0.35x10-3) x100

= 1.43% error

The error percentage maximum I set was 5%, I have worked out the error percentage of area of wire to be 1.43%, and therefore this is acceptable.

Original Length

Length of wire taken as 2.1m

The error in measure of metre rule is 5mm (5x10-3m)

    (0.005/2.1) x100

= 0.238095238%

= 0.24% error

This error is acceptable as it is well below the 5% error maximum I set, so this was seen to be literally an error free measurement.

Force

Mass= 100g each, but 2N intervals in force, so 200g mass for each interval. The mass error is between 99-101g, so +/- 1g. As two were used then 1x2= +/-2g error.

   (2/200) x100

= 1% error

As my error maximum was set to 5%, a 1% error for force is acceptable.

Bibliography

  • http://www.york.ac.uk/depts/chem/course/studhand/solids.html- found out composition of copper and constantan. (7/10)
  • http://www.azom.com/details.asp?ArticleID=60- information on copper alloys (5/10)
  • AS physics text book: very useful, chapter 4-5 are very useful and contained lots of information on the physics theory of my investigation (9/10)
  • AS-physics CD-ROM: provided guides on how to set out coursework and information on the experiment hat this coursework was based on. (8/10)
  • AS Physics teacher: Miss Bottomly: Very helpful. Introduced coursework, hence this would not have been possible without teachers help. (10/10)

By, Kamlesh Vadukul (Heathland school) AS-Level Physics

Word count: 5153

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

4 star(s)

This is a well structured and well written report.
1. The sources of information need to be indicated within the work itself.
2. The running commentary should be removed.
3. The conclusions show good practice.
4. The evaluation should suggest further research opportunities.
****

Marked by teacher Luke Smithen 13/08/2013

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    Ohm's Law coursework

    4 star(s)

    Therefore, more energy is going to be lost in these collisions (as heat). Furthermore, doubling the length of the wire will result in double the resistance. This is because by doubling the length of the wire one is also doubling the collisions that will occur, thus doubling the amount of energy lost in these collisions.

  2. Resistance of a wire - PHYSICS COURSEWORK GCSE

    the wire. This is because as the length of the wire increases a greater force would be required to move a greater number of electrons along the wire but as we are keeping the voltage constant we would therefore expect the resistance to increase.

  1. To investigate which fuel gives out the most energy when burnt. We are burning ...

    Propanol-weight Temperature Start- 173.22 Start- 24�C End- 172.46 End- 39�C Burnt- 0.76 Rise- 15�C Propanol (RMM) = C3H7OH= 60 Energy released= 15 x 100 x 4.2 Moles = 0.76 � 60 = 0.0.01267 = 6300 Energy/mole = energy/moles = 6300�0.01267 = 497.24KJ/MOL 2.

  2. Electromagnets - What factors affect strength of an electromagnet?

    number of electron and aligned atoms increase, a greater magnetic field is generated, from the spinning of the electrons, making a stronger electromagnet. Similarly as the current flowing around the core is decreased, the number of aligned atoms decrease and weaker the magnetic field becomes, and the strength of the electromagnet is decreased.

  1. Physics GCSE Coursework:Factors affecting the resistance of a wire

    Seeing that as I have chosen a range of 10 as to plot an accurate graph I will need at least 10 points to mark on the graph. I have also chosen to take 3 repeats at each length and then take an average.

  2. Free essay

    Resistance in a wire

    This is a necessity because we need to recognise dangers which may occur when commencing an experiment. This allows the correct understanding of how to appropriately utilise the equipment and allows damage and injury prevention. Risk Hazard Solution Hot wires When the electrical current is passing through the wires they

  1. Physics Coursework Investigating Resistance of wires and its relationship to length.

    These factors also help to prove I carried out the experiment and investigation correctly and got strong, reliable and accurate results. Evaluation I believe I have carried out this investigation well and have collected a very good set of results.

  2. An in Investigation into the Resistance of a Wire.

    R = resistance in Ohms (?) Substances which allow an electric current to flow through them are called conductors. Those which do not are called insulators. Metals behave as conductors because of their structure. In a metal the metal atom releases their outermost electrons to form an 'electron cloud' throughout the whole structure.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work