• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Effect of Sodium Hydrogen Carbonate Concentration on the Rate of Photosynthesis

Extracts from this document...

Introduction

Effect of Sodium Hydrogen Carbonate Concentration on the Rate of Photosynthesis Method Firstly I will attach a capillary tube to the nozzle of end of a 20cm3 syringe by means of rubber tubing. I shall push the end of the capillary tube to the tip of the nozzle of the syringe, ensuring that the rubber tubing provides an airtight seal. Using razor blade I will cut three sections of the Elodea stem and after removing the plunger I shall place the cuttings into the nozzle. I will also make certain that the cut ends of the Elodea are facing upwards away from the nozzle end. After this is prepared I can then place the different concentrations of sodium hydrogen carbonate solutions into the barrel. The solutions that are to be used are 0.0100, 0.0125, 0.0166, 0.0250, 0.0500, 0.1000 mol dm-3. To do this I will place my finger over the open end of the capillary tube. Then slowly I will pour one of the concentrations of sodium hydrogen carbonate into the barrel. I will add the solution until the Elodea is covered to the 20cm3 marking. I will then invert the apparatus and slowly push the plunger to push out all the air bubbles from the capillary tube and also makes certain no air is trapped between the plunger and solution in the barrel. ...read more.

Middle

In the concentration of 0.0100 mol dm-3 the largest movement of the meniscus was three millimetres showing that enough carbon dioxide is reaching the Elodea. In the concentration of 0.0125 mol dm-3 the movement of the meniscus has increased but only buy a few millimetres. There is a steady increase till 0.0250 mol dm-3. In the concentration of 0.0250 mol dm-3 between the 3 minutes from 3 to 6 there was a significant movement in the meniscus of 15 millimetres. Therefore showing the carbon dioxide level reaching the Elodea must have declined a great deal to force the Elodea to increase the carbon dioxide intake. Though after this, the amount the meniscus moves goes back in concordance with the rest of the results. This may show an anomalous result but after calculating the average the results fall back into concordance. In the concentration of 0.0500 mol dm-3 a significant increase can be seen of the movement of the meniscus. The movement of the meniscus in the first 3 minutes is 9 millimetres and in the next three minutes the movement of the meniscus increase to 18 millimetres. There is also a significant increase in the last 3 minutes for 15 millimetres. In the last concentration tested 0.1000 mol dm-3 the results table show that here is the largest movement of the meniscus. ...read more.

Conclusion

Many improvements can be carried out during the procedure to reduce the degree of inaccuracy in the results obtained. A more secure connection between the capillary tube and the nozzle of the syringe can be made. Switching the lamp off before each experiment could would prevent the temperature increasing and therefore the enzymes themselves working faster. When pulling the plunger back ensuring there were no air bubbles or spaces in the barrel or capillary tube. Using a more concentrations of sodium hydrogen carbonate would give a more accurate set of results. And also taking more replicates and repeats would enable me to see if my results are reliable. Using a more convenient apparatus than a clamp and boss to hold the capillary tube and would also make certain that the lamp was 8cm away from the Elodea. Measuring the meniscus with a more accurate instrument than a ruler would give more accurate results. All these factors should be considered so the experiment can be improved if I was to do a similar or the same experiment again. From the analysis and evaluation it can be seen that limitation and errors with the method have caused the results to be unreliable. However I can also conclude that the results have been successful to a degree as they did show the correct trends and patterns ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Marked by a teacher

    How the molar concentration of NaHCO3 (Sodium Hydrogen Carbonate) affects the rate of photosynthesis ...

    5 star(s)

    32 0 30 0,0,0 0 32 60 0,0,0 0 32 In general: NaHCO3 concentration (M) Total number of bubbles produced 0.2 556 0.1 484 0.05 502 0.025 491 0.01 42 0 0 NaHCO3 concentration (M) Average number of bubbles produced in one minute 0.2 92.8333 0.1 80.5000 0.05 85.3333 0.025

  2. Experiment to Investigate the Effect of Temperature on the Rate of Photosynthesis in Elodea.

    shows that as the distance from the lamp increases, the number of bubbles decreases, so the relationship between the two variables is inversely proportional. The second trial experiment was to investigate the effect of carbon dioxide concentration on the rate of photosynthesis.

  1. Investigation To Find The Effect Of Temperature On The Rate Of Photosynthesis Of Elodea.

    This is when photosynthesis is being carried out at a constant rate. The reason that a "f 1/b2 did not apply was due to the apparatus used. The lamp that I used had a cover that directed the light energy somewhat.

  2. How temperature affects the rate of photosynthesis.

    The line of best fit shows that as the temperature is raised from 0 oC to 15 oC the average rate of oxygen production increases from 0.5 mm3/min to 47.5 mm3/min. So it can be concluded that as the temperature increase from 0 oC to 35 oC, so does the

  1. Investigating the effect of Light Intensity on Elodea.

    Add 1/4 spatula of sodium hydrogen carbonate to give a supply of carbon dioxide to the Elodea. 3. Get 3 pieces of Elodea. Cut them at each end at a slight angle so that each length of Elodea is the same and measures to about 20cm.

  2. Investigating the effect of temperature on the rate of photosynthesis

    When carbon dioxide concentration is low less GP can be produced. The carbon dioxide in our experiment will come from the H20 from which it is dissolved. We will add sodium bicarbonate to increase the amount of carbon dioxide the elodea is exposed to, therefore will increase the rate of photosynthesis.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work