• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9
10. 10
10

# Electrolysis Investigation

Extracts from this document...

Introduction

Planning I did some preliminary work to see which current values, and for how long to time. The results of this are in the tables below: Electrode-1A Mass before (g) Mass after (g) Mass change (g) Anode 1.38 1.30 -0.08 Cathode 1.35 1.65 +0.30This was done for 10 minutes. The mass lost at the anode should equal the mass gained at the cathode, which this doesn't, it has a percentage inaccuracy of 0.22� .30x100= 73% which is very inaccurate, This may be due to the current being too high, so the copper does not all transfer properly, but lies on the bottom of the beaker, therefore a lower current must be used, as in the table below: Electrode-0.1A Mass before (g) Mass after (g) Mass change (g) Anode 1.42 1.35 -0.07 Cathode 1.16 1.21 +0.05This was also one for ten minutes, and shows much more accurate results, as the percentage inaccuracy is only 0.02� 0.07x100=29%, which is still inaccurate, but is a lot better . This could be due to the current value being to low, so I will take a range of 5 results from 0.1Amp to 1Amp at 0.2Amp intervals. Each electrolysis will last 10 minutes, and each will be repeated twice so that a more accurate average can be taken. Variables * Temperature of the electrolyte * The concentration of the electrolyte * The separation of he electrodes * The size of the ...read more.

Middle

Also the temperature of the solution raised at higher currents by 5� C This would cause less ions to turn to copper at the anode, and make the current more, as there is less resistance. The size of the electrodes was also never exactly the same, as they were reused, so the amount of electrolysis differed from experiment to experiment. The separation of the electrodes was a small source of error, as they were not always exactly the same distance apart. The current which was controlled with the rheostat was not always the same, as the amount of copper decreases, so does the resistance, and so the current increases. Other errors could have been caused by the apparatus, such as the ammeter, which is quite old, and may not be perfectly calibrated, and the scales, which only show the mass to 2 decimal places. The rest are cut of with out rounding. Therefore this experiment could have been made more accurate by using lower current values, with the same size and separation of electrodes, controlling the current so that the temperature is constant, and the current more accurately controlled, and using a more accurate ammeter and a balance which rounds the other decimal places. My results showed many inaccuracies, shown by the accuracy bars on the graph (green for anode, and red for cathode). ...read more.

Conclusion

Also the concentration should remain constant. The amount of copper deposited on the cathode and lost from the anode depends on the number of electrons passing through the circuit, i.e. upon the charge passed through the cell. Now the charge passed, q (in Coulombs), is related to the current. I )in amps) and time, t (in seconds), by Faraday's law: q=ixt therefore I will predict that the mass change of the copper electrodes is directly proportional to the current and the time. Factors which will effect the mass change of the electrodes are: * Temperature * Concentration * Distance between electrodes * Size of electrodes These factors may alter the resistance of the circuit, so they must be kept constant to keep the experiment a fair test. Safety * Copper sulphate solution is poisonous, so must not be taken internally, or come in contact with the eyes. * Propane is highly flammable, so must be kept away from flame. Damages eyes and skin, so safety glasses must be worn. Method Copper sulphate solution is electrolysed using clean copper electrodes which are weighed before and after use. To make sure that copper are dry and clean after use, they are rinsed in distilled water, and then propane. During the electrolysis, the current is controlled and maintained at a constant value by a rheostat in the circuit. Five current values in the range 0-1.25A are used, each for a period of 10 minutes, repeating each value three times to improve the accuracy of the results ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Changing Materials - The Earth and its Atmosphere section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Changing Materials - The Earth and its Atmosphere essays

1. ## An experiment to show how electroplating using copper electrodes.

twice because they are in order of low, medium and high range of my experiment and also I could take the average results of them. After each experiment the electrodes are put into ethanol again to clean the excess copper sulphate solution, which might affect the change in mass in them.

2. ## The Electrolysis Of Copper Sulphate Solution Using Copper Electrodes

This made it possible for the loss of copper at the anode to be used as a part of the results. The loss at anode can be more accurately measured since one cannot alter the mass of the anode significantly if it had been dried properly (since the copper does not drop off).

1. ## Investigate the factors that affect the mass of Copper deposited on the Copper Cathode ...

sulphate solution and the propanone is used to rinse away the water, and because propanone is a volatile liquid it will quickly evaporate and form as gas. This will result in accurate measurement, as only the fresh copper will be left on the cathode and that is all that is being investigated.

2. ## The Electrolysis Of Copper (ii) Sulphate Solution Using Copper Electrodes

the first amperage and a five minute time period for the experiment was considered. Now that a minimum current had been chosen a maximum current had to be found. At 2A an experiment was conducted to see the temperature increase up to the five minute period and mass increases at certain of these: Time (min)

1. ## What Effects the Reaction in the Electrolysis of Copper Sulphate.

Electrolysis splits a compound into both negative ions and positive ions. Negative ions are attracted to the anode and positive ions are attracted to the cathode. In my experiment there will not be negative ions that will go to the anode.

2. ## Investigation to show how the amount of electric current affects the amount of copper ...

In order to guarantee that my results are precise and accurate, I will ensure that my experiment is a fair test by keeping the following factors the same: * the electric current passed through the copper sulphate solution during each individual test.

1. ## Factors affecting mass of copper transferred in Electrolysis of aqueous copper sulphate

sulfate (CuSO4) is the most common copper salt, made by the action of sulfuric acid on the base copper(II) oxide. The anhydrous form is a pale green or gray-white powder, while the hydrated form is bright blue. The electrolysis of copper sulphate solution is udeful because it can be used to purify copper.

2. ## Electrolysis - The aim of this experiment is to prove that by passing electric ...

These charged particles, which move to the electrodes during electrolysis, are called ions. During electrolysis Na+ ions near the cathode combine with negative electrons on the cathode forming neutral sodium atoms. At the anode Cl- ions lose electrons to the positive anode leaving neutral chlorine atoms.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to