• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Examine the relationship between the height a ball is dropped from and the vertical distance from the point of impact that its first bounce travels.

Extracts from this document...


Investigation to find out what affects the height that a golf ball bounces to

Aim: I wish to examine the relationship between the height a ball is dropped from and the vertical distance from the point of impact that its first bounce travels.

Apparatus: Tape Measure, A Golf Ball, Ping Pong Ball, Floor


Using a tape measure suspended and weighted at the bottom (to ensure verticality), measure the appropriate starting height. The centre of the ball should be aligned with the relevant markings on the tape and dropped so that the tape does not foul the path of the ball. A spotter should be ready to sight up the height of the bounce and as level with the apex of the balls path as possible. A tolerance of 10mm is realistic. This should be repeated five times each at heights of 0.5m, 1m, 1.5m, 2m and 2.5 meters.

In this experiment I will measure the height reached after the bounce, because that is what I wish to investigate. I will also need to measure the independent variable, the height at which the ball is dropped from. To measure both of these I will use metre sticks and I think that they will be accurate enough considering that we will only have someone’s judgement to go by with regards to how high it bounces to.

...read more.


Momentum: The formula for momentum is Momentum = Mass × Velocity. It is possible to work out the average velocity of the falling ball using the formula v=√ (2gh)(a rearranged version of the formulas for gravitational potential energy and kinetic energy). Since the only thing within this formula that will change is the height it is possible to see that a ball dropped from a higher height will have a higher average velocity, unless it reaches terminal velocity. Therefore a ball dropped from a higher height, having a bigger velocity will subsequently have more momentum. Before colliding with the floor the momentum of the ball is its mass multiplied by its velocity and the momentum of the floor is 0. When the ball hits the floor it stops momentarily but because of the conservation of momentum the momentum must still exist after the collision in the particles of the floor and the ball, which are now moving. When the ball bounces up again the particles are still moving so they have some momentum which means that the ball cannot have as much momentum as it did before the collision and therefore, since its mass has not changed it must have a smaller velocity.

Elasticity: Elasticity is the ability of a solid to recover its shape once deforming forces are removed. A golf ball has this ability due to the elastic bands inside it.

...read more.


Despite all the inaccuracies in the method the results seem surprisingly accurate. The averages fall in a near perfect straight line, which would suggest that they are accurate. Assuming the results were read fairly accurately it would lead me to believe that the other issues of inaccuracy are fairly negligible. To achieve such a straight line probably means that our results are accurate enough to base a conclusion on.

The experiment could be made more accurate by filming each bounce and playing it back in slow motion to obtain more accurate measurement, for example to the nearest 5mm. I could also go to extra lengths to make sure that the ball landed in exactly the same place each time and that it was dropped and not thrown.

The results are fairly reliable because we repeated each height five times so that anomalous results would become obvious. Very few of our results varied that much within each height and therefore our results are probably quite reliable. In order to make the results even more reliable more repeats could be carried out, however I do not think this is entirely necessary as the heights reached were always so close to the same percentage.

If I were to complete a similar experiment I would wish to find out if after a certain height the golf ball can no longer maintain the percentage height reached after a bounce, as I discovered with the ping-pong ball. I would also like to see if the same percentage of height is lost after a second, third, fourth or fifth bounce etc.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Peer reviewed

    Investigating factors that affect the bounce height of a squash ball

    5 star(s)

    This increase in force due to the faster speed means that the ball will, theoretically, bounce higher. This is true up to a certain point. As the ball speeds up, the air resistance against it increases. At a certain point, the air resistance and the pull of gravity will balance

  2. Bouncing Ball Experiment

    Then when dropping the ball again eye level will be kept level with the blue tack thus avoiding parallax errors. The weight and material of the ball will be kept the same throughout the experiment by using the same ball.

  1. Investigating Impact Craters

    This will be due to the ball having more kinetic energy (mass multiplied by velocity squared) - so more energy will be put into displacing the sand grains downward and outward. Experiment Three - How does crater diameter vary with the ball's diameter?

  2. Investigate the effects of an asteroid impact on Earth through a small-scale simulation.

    The sand will react similarly to how the Earth would if impacted on. I shall drop the ball from a range of heights from 20cm to 100cm in 10cm increments. I am going to do this many, as it is more than 8 measurements per experiment, which justifies me plotting a straight-line graph.

  1. Squash Ball and Temperature Investigation

    You may also wear gloves and a protective lab coat, as they will minimise the hazards of any chemical spillages on your cloths and skin. Preliminary Work Preliminary work has to be done in order to determine what the final method of the experiment will be and how it is conducted.

  2. Aim To see how the efficiency of a bouncing ball ...

    There are no balls that are 100% efficient however some balls are more efficient than other. Some factors that can affect the bounce height of a ball, not including the dropping height are: * Pressure inside of the ball

  1. Investigating the amazingness of theBouncing Ball!

    Having said that, when dropping the ball I may still unintentially throw the ball down which could be the effect of any movement made by hand other than dropping the ball. So I would simply place the ball on top of the metre ruler and due to the lack of

  2. This investigation is associated with the bounce of a squash ball. I will be ...

    Both potential and kinetic energy have units of Joules (J). As the ball falls through the air, the Law of Conservation of Energy is in effect and states that energy is neither gained nor lost, only transferred from one form to another.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work