• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

Experiment to Compare Stomata Density in Different Dicotyledonous

Extracts from this document...


Experiment to Compare Stomata Density in Different Dicotyledonous Aim: To investigate if stomata density on leaves in different dicotyledonous plants is effected by there country/ eco-system of origin. I will also compare the upper and lower epidermis stomata density to see were it lies. Information on stomata and Hypothesis Based Upon this Information: Diagram 1: Structure of a leaf. The lower and upper epidermis along with the stem of a plant may contain stomata. These are openings through which gases are exchanged with the atmosphere and water is lost, this is called transpiration. Carbon dioxide is need in the process of photosynthesis. Carbon dioxide is diffused in through the stomata for photosynthesis and some carbon dioxide is produced through respiration along with the production of water which transpires out. These openings are surrounded by specialized crescent shaped guard cells, which changes their size and shape to change the size of the stomatal openings. This regulates the gas exchange e.g. open more gas exchange, closed no gas exchange. These guard cells have different stimulus to active or deactivate the openings; light, CO2 concentration, humidity and wind speed. The epidermis is covered with a waxy coating called the cuticle, which functions as a waterproofing layer and which helps to reduces water loss from the plant surface through evaporation. Transpiration (evaporation of water from plant surfaces) happens mostly from the surface openings, the stomata. Stomata transpiration accounts for most of the water loss by a plant, but some direct evaporation also takes place through the surfaces of the epidermal cells of the leaves. The Leaf is the principal food-making part of a plant. Not all leaves are green; many have additional pigments that produce colours other than green. The shapes and structure of leaves are adapted to the conditions which they live in. Stomata represent a hazard to a plant in that they may cause excessive transpiration of water from the leaf. ...read more.


Tally counter: So that I count the number of stomata easily and so I can record my results easily, without relaying on human memory. Risk Factor: There is very little danger, if any in this experiment. The risk factors are: 1. Clear nail varnish fumes are toxic to human. To counter this risk a well ventilated room shall be used to avoid inhalation of excess fumes. 2. Care in applying the varnish should also be taken to avoid spillages on to human skin, eyes or clothing. If the varnish comes in contact with eyes wash immediately at labelled eye wash stations and seek immediate medical attention. 3. If consumption of nail varnish occurs seek immediate medical attention 4. The pointed tweezers are sharp ended, thus care in carrying these should be taken to avoid accidents. Preliminary Method: 1. Prepare an epidermal impression by coating the upper and lower leaf surface with a thinish coat of clear nail varnish. 2. Wait for approximately 15 minutes or until the vanish is completely dry. Then peel off the dried layer of nail varnish very carefully using a pair of thin ended tweezers. (Alternatively, with some plants you can peel off an epidermal strip directly, which can be mounted in water on a slide and place under the microscope) 3. Place the impression on to a glass slide a smooth out any bubbles. 4. Place another glass slide over the top of the impression to hold it secure. 5. Using a microscope at a set magnification (to be decided through preliminary experiment) count the stomata that you can see. Making sure you do not move the slide at any time. Record these results and then recount this area at least three times, and then move the slide on to another area and count the stomata there, recounting three times. 6. Do this for each the lower and upper epidermis and for a variety of plants making sure you record all results. ...read more.


One of the biggest problems that I had to over come in this investigation was the correct removal of the nail polish (epidermis impression), or even a large enough piece to use from the leaf surface. There where 3 plants that I could not obtain any epidermis impression from and one plant, the eucalyptus, that I could not obtain a upper epidermis impression from. Also, some of the plants took more than coating of nail varnish to obtain an impression. The plants that I could obtain no epidermis impression from was the blackberry/ bramble, geranium and honeysuckle leaves. The bramble was like the geranium covered in millions of hairs that meant the nail varnish came off in little pieces that were too small to use, or the hairs came off in the nail varnish making the image under the microscope fuzzy and they covered many of the stomata. This would have made the results were inaccurate. Also, with the geranium and with he honeysuckle the leaves had no waxy cuticle to them. This meant that the nail varnish was absorbed into the leaf and did not dry, instead the leaf when dark green, soggy and very fragile, making it impossible to gain an epidermis impression like this. For the eucalyptus obtaining the lower epidermis impression was very difficult and when it came to the upper epidermis I just could not get a piece large enough. I found that, although the leaves did have some waxy cuticle , he nail polish just did not come off, and the leaf seemed to absorb it. Other plants that I had trouble with was the primrose, which like the geranium, soaked up the nail varnish. However, after several re-painting of the leaf I did manage to get an epidermis impression. To stop this from happening in the further investigations you could do an epidermis peel, this is were the epidermis is removed directly from the leaf and looked at under the microscope. 1 Emma Cheney: A-level bio coursework (TG: JXL) ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Marked by a teacher

    Investigate which surface of a leaf loses more water by transpiration.

    3 star(s)

    If I pointed the underside of the leaf towards the sun, I may find that it transpires excessively and that the topside. Whereas if I point the topside towards the sun, the topside will transpire slightly, if very minimally, and the underside will still transpire more than the topside but less than it would if it were facing the sun.

  2. An experiment to investigate the water loss from leaves through stomata.

    will lose the least amount of water. This is because petroleum jelly is a non-permeable substance. When it is applied to leaf four it forms a watertight seal around the whole leaf. This means, that no water cannot escape through the stomata.

  1. An Investigation into Water Loss from Plants.

    29.35 0.77 2.55 14 31.36 31.16 30.98 0.38 1.21 15 28.43 28.15 27.89 0.54 1.89 16 30.94 30.59 30.32 0.62 2.00 17 31.45 31.22 31.03 0.42 1.33 18 34.01 33.8 33.62 0.39 1.14 19 33.13 32.52 31.38 1.75 5.28 20 33.11 32.90 32.79 0.32 0.97 Average Percentage mass lost: No

  2. What is the effect on the rate of respiration of yeast cells with glucose ...

    Main sources of error A factor that caused errors in results is evaporation of carbon dioxide gas through the connections between the apparatus. This would have resulted in a decrease in the volume of carbon dioxide gas recorded. The distortion of measurements in volumes of carbon dioxide gas produced caused by evaporation therefore means that the results are invalid.

  1. Mangrove Soil Analysis

    soil moisture available to plants, since the water which drains off due to gravity is in the root zone too briefly to be absorbed. Prediction: I predict that the Rainforest Soil will have the best water-holding ability however the Inner Zone Mud will hold the least amount of water..

  2. Are there more stomata per mm2 on old leaves or young leaves?

    * I will not distort the nail-varnish peel by pressing down on it, changing the results. Prediction I think that age does not affect the amount of stomata on a leaf because of the way in which leaves grow. New leaf cells develop around the edges of the leaf in

  1. In this investigation the effect of nitrate concentration on the growth of plants will ...

    4 Day 5 Day 6 0 25 1.1 2.0 2.9 4.0 4.9 6.1 5 20 0.3 0.5 0.6 1.0 1.5 2.0 10 15 0.1 0.3 0.4 0.9 1.0 1.4 15 10 0.1 0.2 0.5 0.6 0.9 1.0 20 5 0.1 0.2 0.5 0.9 1.0 1.2 Fig.4 Average Length of seedlings

  2. Discuss the various adaptations of vertebrates that enable them to live in marine conditions.

    Accordingly, expert swimmers reduce or eliminate all major projections not needed for propulsion and steering. Swimmers other than mammals have no external ears or external genitalia in their ancestry. Aquatic mammals secondarily lose their external ears and move the testes back into the abdomen.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work