• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Experiment to investigate the effect of light on the organic plant elodea.

Extracts from this document...

Introduction

Experiment to investigate the effect of light on the organic plant elodea. Aim: To calculate the rate of photosynthesis from the number of oxygen bubbles produced by the plant. Photosynthesis: The process by which green plants use the sun's energy to build up carbohydrate reserves. Plants make their own organic food such as starch. Plants need Carbon dioxide, water, light and chlorophyll in order to make food; and starch and oxygen are produced. Carbon dioxide and water are the raw materials of photosynthesis. The equation of photosynthesis is: 6CO2 + 6H20 ==> C6H12O6 + 6O2 Carbon dioxide + water ==> glucose + oxygen Green plants need sunlight. They use the light energy to make a sugar called glucose. Glucose can be turned into another type of sugar called sucrose and carried to other parts of the plant in phloem vessels. Glucose can also be turned into starch and stored. Both starch and sucrose can be converted back into glucose and used in respiration. ...read more.

Middle

* Take the temperature of the plant by placing the thermometer into the beaker to see if the elodea is at a temperature where it would not be affected by enzymes . * Count the bubbles at one-minute intervals as they appear using the tally counter to record the results. * Repeat the experiment but moving the bench lamp 5cm away each time after 1 - minute intervals to make it a fair test. Preliminary results: Time in minutes Distance of lamp (cm) Amount of bubbles 1 5 34 2 10 128 3 15 192 4 20 161 5 25 111 Table of results to show how many bubbles were produced per minute at 32? 1. Time in minutes Distance in cm Amount of bubbles produced per minute 1 5 82 2 10 79 3 15 73 4 20 67 5 25 61 6 30 50 7 35 41 8 40 38 2. ...read more.

Conclusion

Anomalous results could of also been caused by my counting at a certain angle that would not allow me to see every single bubble as they rose to the surface or the bubbles could have been caught up in the leaves giving us an underestimate of bubbles produced. Using a tally counter helped to count the amount of bubbles that rose. It was a better method than plotting dots on a piece of paper every time a bubble rose because a dot may be accidentally put on top of another. The graphs showed that the further away the light the less bubbles were produced. To get a better graph or set of results the experiment could have been tested. The results could be like this because the plant could of run out of carbon dioxide. Another error could have been the distance between the light source and elodea were not measured to a high degree of accuracy. Overall I think the experiment went well and although the results varied it turned out ok! 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Experiment to Investigate the Effect of Temperature on the Rate of Photosynthesis in Elodea.

    At a certain point of enzyme concentration, the reaction will not get faster, even if more enzyme is added, because all the substrate molecules will be bound to the active sites of enzymes. The graph to show the effect of varying enzyme concentration on an enzyme controlled reaction is as follows: (Cambridge Biology 1)

  2. Investigating the effect of Light Intensity on Elodea.

    The Elodea should be cut at an angle so that bubbles come out faster because the opening of the stem is bigger.

  1. What is the effect on the rate of respiration of yeast cells with glucose ...

    minutes * After 5 minutes, stopper the reaction vessel of the conical flask and start the timer. * After 2 minutes had elapsed, check the gas syringe scale and record the amount of gas produced.

  2. Investigation To Find The Effect Of Temperature On The Rate Of Photosynthesis Of Elodea.

    11.) Proceed to the data analysis stage. Results: Distance (cm) Light Intensity (LUX) Bubbles per Minute Average bubbles/minute 1 2 3 0 (off scale) 240 249 251 246.7 5 11,000 201 222 214 212.3 10 5,800 183 185 188 185.3 15 3,570 154 152 158 154.7 20 2,320 128 118 124

  1. The effects of organic effluent from the seweage on the biodiversty in a freshwater ...

    These conditions may cause the water and its constituents(enzymes) to become disrupted and hence change there tertiary structure and hence lead to harmful effects on the stream life. This will also affect the biodiversty in the fresh water stream. 14.

  2. How temperature affects the rate of photosynthesis.

    Also as per the prediction, the highest value was recorded at 45 oC and the lowest value was recorded at 65 oC in the individual and the class average results. But again as the decrease was inversely proportional to the increase in temperature, but there was a noticeable difference between

  1. The aim of this experiment is the effect of temperature on the rate of ...

    The general formula for this is: n CO2 + n H2O --------------------------> (CH2O) n + n O2 The light-dependent reactions need light energy to be able to split water into hydrogen and oxygen ions, and also to provide energy for ATP synthesis and to reduce NADP.

  2. Compare the effect of heavy and light oil on terrestrial plants.

    Fortunately, these residents of watery habitats usually are able to recover once the oil has been removed or has degraded. These plant communities play a vital role in the habitat, and loss of plant cover can have a significant impact on other organisms in the ecosystem.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work