• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Experiment to investigate the effect of light on the organic plant elodea.

Extracts from this document...

Introduction

Experiment to investigate the effect of light on the organic plant elodea. Aim: To calculate the rate of photosynthesis from the number of oxygen bubbles produced by the plant. Photosynthesis: The process by which green plants use the sun's energy to build up carbohydrate reserves. Plants make their own organic food such as starch. Plants need Carbon dioxide, water, light and chlorophyll in order to make food; and starch and oxygen are produced. Carbon dioxide and water are the raw materials of photosynthesis. The equation of photosynthesis is: 6CO2 + 6H20 ==> C6H12O6 + 6O2 Carbon dioxide + water ==> glucose + oxygen Green plants need sunlight. They use the light energy to make a sugar called glucose. Glucose can be turned into another type of sugar called sucrose and carried to other parts of the plant in phloem vessels. Glucose can also be turned into starch and stored. Both starch and sucrose can be converted back into glucose and used in respiration. ...read more.

Middle

* Take the temperature of the plant by placing the thermometer into the beaker to see if the elodea is at a temperature where it would not be affected by enzymes . * Count the bubbles at one-minute intervals as they appear using the tally counter to record the results. * Repeat the experiment but moving the bench lamp 5cm away each time after 1 - minute intervals to make it a fair test. Preliminary results: Time in minutes Distance of lamp (cm) Amount of bubbles 1 5 34 2 10 128 3 15 192 4 20 161 5 25 111 Table of results to show how many bubbles were produced per minute at 32? 1. Time in minutes Distance in cm Amount of bubbles produced per minute 1 5 82 2 10 79 3 15 73 4 20 67 5 25 61 6 30 50 7 35 41 8 40 38 2. ...read more.

Conclusion

Anomalous results could of also been caused by my counting at a certain angle that would not allow me to see every single bubble as they rose to the surface or the bubbles could have been caught up in the leaves giving us an underestimate of bubbles produced. Using a tally counter helped to count the amount of bubbles that rose. It was a better method than plotting dots on a piece of paper every time a bubble rose because a dot may be accidentally put on top of another. The graphs showed that the further away the light the less bubbles were produced. To get a better graph or set of results the experiment could have been tested. The results could be like this because the plant could of run out of carbon dioxide. Another error could have been the distance between the light source and elodea were not measured to a high degree of accuracy. Overall I think the experiment went well and although the results varied it turned out ok! 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Experiment to Investigate the Effect of Temperature on the Rate of Photosynthesis in Elodea.

    This will be done in the following ways: Prediction I predict that the rate of reaction of temperature will increase up to a maximum rate of about 300C. In addition I predict that the rate will double with every rise of 100C.

  2. Investigating the effect of Light Intensity on Elodea.

    * 1 Scalpel to cut the ends of the Elodea * 1 Stop clock to time the experiment * 1 white tile * 1 Spatula * 3x 1/4 Spatula of sodium hydrogen carbonate * 1m ruler Safety: * Keep the lamp and electricity plug + socket away from any water.

  1. What is the effect on the rate of respiration of yeast cells with glucose ...

    placed on a sturdy surface such as a table and should be kept away from the edge of tables, so that they are not knocked over and broken. If any glassware is broken one should not pick it up as this would also be a risk within itself for broken glass is very sharp and could be dangerous.

  2. This experiment involves using a photosynthometer to investigate how temperature affects the rate of ...

    Consequently, there is some photosynthesis taking place. When the elodea cell is placed in water which is maintained at 45o C, the number of bubbles sighted increase rapidly (particularly in the second and third minutes). Notice for the fourth and the fifth minutes, the number of bubbles observed start to decline.

  1. Investigation To Find The Effect Of Temperature On The Rate Of Photosynthesis Of Elodea.

    the pond weed using the plasticine. 5. Place a water-filled test tube upside down and over the funnel (see diagram). 6. Place the ruler so that the "0" measurement is aligned with the side of the beaker. (distance measured from side of beaker to edge of light bulb)

  2. How temperature affects the rate of photosynthesis.

    But it wasn't predicted that the rise in the rate of photosynthesis from 0 oC to 15 oC would be less steep than the rise between 15 oC -25 oC and 25 oC -35 oC. Also as predicted at 0 oC the elodea showed the lowest rate of oxygen production

  1. The effects of organic effluent from the seweage on the biodiversty in a freshwater ...

    Ammonia is toxic and may lead to a lower biodiversty in the water stream near the sewage. Hence a nitrate indicator will be used to check for the presence of nitrates in the fresh water stream and support my hypothesis.

  2. Compare the effect of heavy and light oil on terrestrial plants.

    In tropical regions, mangrove forests are widely distributed and replace salt marshes on sheltered coasts and in estuaries. Mangrove trees have complex breathing roots above the surface of the organically rich and oxygen-depleted mud in which they live. Oil may block the openings of the air breathing roots of mangroves

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work