• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Experiment to investigate the effect of light on the organic plant elodea.

Extracts from this document...

Introduction

Experiment to investigate the effect of light on the organic plant elodea. Aim: To calculate the rate of photosynthesis from the number of oxygen bubbles produced by the plant. Photosynthesis: The process by which green plants use the sun's energy to build up carbohydrate reserves. Plants make their own organic food such as starch. Plants need Carbon dioxide, water, light and chlorophyll in order to make food; and starch and oxygen are produced. Carbon dioxide and water are the raw materials of photosynthesis. The equation of photosynthesis is: 6CO2 + 6H20 ==> C6H12O6 + 6O2 Carbon dioxide + water ==> glucose + oxygen Green plants need sunlight. They use the light energy to make a sugar called glucose. Glucose can be turned into another type of sugar called sucrose and carried to other parts of the plant in phloem vessels. Glucose can also be turned into starch and stored. Both starch and sucrose can be converted back into glucose and used in respiration. ...read more.

Middle

* Take the temperature of the plant by placing the thermometer into the beaker to see if the elodea is at a temperature where it would not be affected by enzymes . * Count the bubbles at one-minute intervals as they appear using the tally counter to record the results. * Repeat the experiment but moving the bench lamp 5cm away each time after 1 - minute intervals to make it a fair test. Preliminary results: Time in minutes Distance of lamp (cm) Amount of bubbles 1 5 34 2 10 128 3 15 192 4 20 161 5 25 111 Table of results to show how many bubbles were produced per minute at 32? 1. Time in minutes Distance in cm Amount of bubbles produced per minute 1 5 82 2 10 79 3 15 73 4 20 67 5 25 61 6 30 50 7 35 41 8 40 38 2. ...read more.

Conclusion

Anomalous results could of also been caused by my counting at a certain angle that would not allow me to see every single bubble as they rose to the surface or the bubbles could have been caught up in the leaves giving us an underestimate of bubbles produced. Using a tally counter helped to count the amount of bubbles that rose. It was a better method than plotting dots on a piece of paper every time a bubble rose because a dot may be accidentally put on top of another. The graphs showed that the further away the light the less bubbles were produced. To get a better graph or set of results the experiment could have been tested. The results could be like this because the plant could of run out of carbon dioxide. Another error could have been the distance between the light source and elodea were not measured to a high degree of accuracy. Overall I think the experiment went well and although the results varied it turned out ok! 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. What is the effect on the rate of respiration of yeast cells with glucose ...

    Increasing the temperature speeds up the respiration, because the glucose particles have more energy, and they will collide with the active site of the yeast particles with greater frequency and force. Therefore, the chances of them forming enzyme-substrate complexes with the yeast cells increase (Biology Foundation 5.1.3 Enzymes).

  2. Investigating the effect of Light Intensity on Elodea.

    This means that the rate of photosynthesis was at its highest. However, when the distance of the lamp from the Elodea is 50cm, the average number of bubbles is only 13 with a light intensity of 0.0004 lux. This means that the rate of photosynthesis was at its slowest in this experiment.

  1. Experiment to Investigate the Effect of Temperature on the Rate of Photosynthesis in Elodea.

    After the maximum rate, the rate will start to decrease more rapidly, and the gradient of the decrease will be steeper than that of the increase. I predict that photosynthesis will no longer take place at about 500C and the graph will reach and stay at a rate of 0, even if the temperature is further increased.

  2. This experiment involves using a photosynthometer to investigate how temperature affects the rate of ...

    is immersed in the water. 5. Place the bench lamp 10 cm away from the boiling tube. Ensure the light is directly facing the elodea specimen. 6. After setting all the apparatus up, pull the syringe on top of the capillary tube in order for the water to get into the capillary tube.

  1. How temperature affects the rate of photosynthesis.

    This was not very accurate because it easily resulted in a temperature higher or lower than the one needed being reached. Reliability: The results of the individual experiment conducted were pretty reliable to a certain extent. As evident from the graph, the rate of oxygen released was in a strong

  2. Investigation To Find The Effect Of Temperature On The Rate Of Photosynthesis Of Elodea.

    I am satisfied with the range of the results we covered but I do believe that the temperatures we measured could be more chosen with more reason instead of randomly picked in a given range. I would have also liked to have made more measurements to find the optimum temperature of the plant.

  1. The effects of organic effluent from the seweage on the biodiversty in a freshwater ...

    This prevents photosynthesis which makes oxygen. * Use an oxygen meter to measure the oxygen concentration f the second sample and the difference is a a standard measure of BOD. 10. The results obtained will be used to determine if high BOD in organic effluent rich stream area is the reason for the difference in biodiversty(low)

  2. Compare the effect of heavy and light oil on terrestrial plants.

    Marsh vegetation shows greater sensitivity to fresh light crude or light refined products whilst weathered oils cause relatively little damage. Oiling of the lower portion of plants and their root systems can be lethal whereas even a severe coating on leaves may be of little consequence especially if it occurs outside the growing season.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work