• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14

Experimental Techniques; Analysis of Boundary Layer Data.

Extracts from this document...

Introduction

Joseph Gransden        Case Study 3: Experimental Techniques        10/05/07

CASE STUDY 3: Experimental Techniques; Analysis of Boundary Layer Data

By Joseph Gransden

Department of Mechanical Engineering, Nottingham University

The following report is an experimental study of Boundary layer data obtained using hot-wire anemometry. In particular, the report presents and analyses mean velocity and turbulence intensity profiles as well as turbulence statistics. The aim is to discover the best methods of presenting and analysing data in order to determine and explain some of the turbulence phenomena by discussion of the data and its implications.

RESULTS  

Firstly the hot wire anemometer output voltage is calibrated using King’s Law against the velocities that are initially measured with a pitot tube or vane anemometer.

Hot-wire Calibration Data

Mean

Mean

Hot-wire

Velocity

Voltage

E

E2

U

U1/2

Volts

m/s

1.4227

2.02407529

1.02

1.00995

1.4466

2.09265156

1.222

1.105441

1.4687

2.15707969

1.441

1.200417

1.5002

2.25060004

1.785

1.336039

1.5204

2.31161616

2.029

1.42443

1.534

2.353156

2.198

1.482565

1.5507

2.40467049

2.434

1.560128

1.5684

2.45987856

2.689

1.639817

1.5837

2.50810569

2.928

1.71114

1.5979

2.55328441

3.16

1.777639

1.6115

2.59693225

3.407

1.845806

1.6252

2.64127504

3.656

1.912067

1.6366

2.67845956

3.886

1.971294

1.6488

2.71854144

4.132

2.032732

1.6599

2.75526801

4.378

2.092367

1.6712

2.79290944

4.629

2.151511

1.6814

2.82710596

4.869

2.206581

KINGS LAW

E2 = A + B(U)1/2

Where, B = slope =

0.6718895

from chart overleaf

and A = y - intercept =

1.35315794

Therefore,

E2 = 1.353 + 0.672(U)1/2

image00.png

This calibration then allows for the mean and fluctuating velocities (turbulence intensity) to be determined.

...read more.

Middle

The boundary layer thickness has been approximated here using the definition provided by F.M White. That is:

Boundary Layer thickness,        δ = ywhere u = 0.99U0

U/U0

dy

1-U/U0

Trap Areas

U/U0*(1-U/U0)

Trap Areas

y

u'/U0

(y/δ)1/7

mm

0.088077447

0.3

0.91192

0.13678838

0.080319811

0.01204797

0.005

0.018977

0.46933

0.103154735

0.1

0.89685

0.09043839

0.092513835

0.00864168

0.0067

0.045354

0.48902

0.124079962

0.1

0.87592

0.08863827

0.108684125

0.0100599

0.0084

0.063321

0.50486

0.15541488

0.1

0.84459

0.08602526

0.131261095

0.01199726

0.01

0.079471

0.51818

0.182124266

0.1

0.81788

0.08312304

0.148955018

0.01401081

0.0117

0.098874

0.52972

0.211948564

0.1

0.78805

0.08029636

0.16702637

0.01579907

0.0134

0.104896

0.53992

0.273886695

0.2

0.72611

0.15141647

0.198872773

0.03658991

0.0167

0.12431

0.55741

0.332334653

0.2

0.66767

0.13937787

0.221888332

0.04207611

0.0201

0.14249

0.57211

0.380250394

0.3

0.61975

0.19311224

0.235660032

0.06863225

0.0251

0.152747

0.59065

0.462601881

0.5

0.5374

0.28928693

0.248601381

0.12106535

0.0334

0.151193

0.61543

0.517238474

0.5

0.48276

0.25503991

0.249702835

0.12457605

0.0418

0.145951

0.63536

0.567915838

0.5

0.43208

0.22871142

0.245387439

0.12377257

0.0502

0.139529

0.65213

0.599502832

0.5

0.4005

0.20814533

0.240099186

0.12137166

0.0585

0.129714

0.66665

0.615678193

0.5

0.38432

0.19620474

0.236618556

0.11917944

0.0669

0.125845

0.67948

0.61744223

0.5

0.38256

0.19171989

0.236207323

0.11820647

0.0752

0.117982

0.69101

0.63524808

0.5

0.36475

0.18682742

0.231707957

0.11697882

0.0836

0.117829

0.70149

0.658847958

1

0.34115

0.35295198

0.224767326

0.22823764

0.1003

0.105211

0.72001

0.672233025

1

0.32777

0.33445951

0.220335785

0.22255156

0.117

0.102512

0.73604

0.680154293

1

0.31985

0.32380634

0.217544431

0.21894011

0.1337

0.102262

0.75021

0.684370372

1

0.31563

0.31773767

0.216007566

0.216776

0.1505

0.096433

0.76294

0.699011857

1

0.30099

0.30830889

0.210394281

0.21320092

0.1672

0.099254

0.77451

0.715766

2

0.28423

0.58522214

0.203445033

0.41383931

0.2006

0.091777

0.79495

0.739622481

3

0.26038

0.81691728

0.192581067

0.59403915

0.2508

0.095419

0.8207

0.780600965

5

0.2194

1.19944139

0.171263099

0.90961041

0.3344

0.088862

0.85513

0.816117886

5

0.18388

1.00820287

0.150069482

0.80333145

0.418

0.084794

0.88283

0.850451416

5

0.14955

0.83357674

0.127183805

0.69313322

0.5016

0.07836

0.90613

0.880719308

5

0.11928

0.67207319

0.105052808

0.58059153

0.5851

0.074942

0.9263

0.912188242

5

0.08781

0.51773112

0.080100853

0.46288415

0.6687

0.067026

0.94414

0.938074298

5

0.06193

0.37434365

0.058090909

0.34547941

0.7523

0.060058

0.96016

0.956916358

5

0.04308

0.26252336

0.041227442

0.24829588

0.8359

0.052861

0.97472

0.974824407

5

0.02518

0.17064809

0.024541782

0.16442306

0.9195

0.044776

0.98809

0.990586663

5

0.00941

0.08647232

0.009324726

0.08466627

1.0031

0.030344

1.00044

0.997052505

5

0.00295

0.03090208

0.002938807

0.03065883

1.0867

0.019951

1.01195

0.99764158

5

0.00236

0.01326479

0.002352858

0.01322916

1.1703

0.014744

1.02272

1.001180482

5

-0.0012

0.00294484

-0.00118188

0.00292745

1.2539

0.009536

1.03285

1.001180482

5

-0.0012

-0.0059024

-0.00118188

-0.0059094

1.3375

0.007602

1.04242

1

10

0

-0.0059024

0

-0.0059094

1.5047

0.00565

1.0601

1

10

0

0

0

0

1.6719

0.005635

1.07618

Bulk Velocity, U0 =

2.44780599

0.99U0 =

2.42332793

Boundary Layer Thickness =

59.81390261

Displacement Thickness

δ* =

10.80487536

mm

Momentum Thickness

θ =

7.500002088

mm

Shape Factor

H =

1.440649647

image15.png

image16.png

To find the correct logarithmic velocity profile the Clauser plot technique was employed varying the friction velocity, u* to ‘match’ the logarithmic region of the profile to the known log law. This provided a graphical means of determining u*. Also on the following is the linear viscous sublayer plot of u+ = y+.

...read more.

Conclusion

  From the PDF a skewness of 1.102 and kurtosis of –0.137. These are analogous to the asymmetry and flatness of the plot respectively. It is already known that in free shear flows the PDF is not Gaussian. The skewness is to the left, hence there is higher frequency of negative streamwise velocities at the position y+ = 2 therefore suggesting maybe a high influence of spanwise, vortical structures in the linear viscous sublayer.  As we are concerned with the region close to the wall the spanwise vortices are in fact induced by the zero velocity retardation at the wall and the shear layer formation.

It is also worth noting that the negative sign on the kurtosis has no significance.

References

  • KLINE et al (1967) “ The structure of turbulent boundary layers”. J of Fluid Mech. Vol 30 pp 741- 773
  • CHOI K-S (2001) “ Boundary layers” Fluid Mechanics 2 notes.
  • WHITE F.M (2000) “Fluid Mechanics”
  • POPE S.B (2000) “Turbulent flows”

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Peer reviewed

    Factors Influencing Resistance of a Wire

    3 star(s)

    This is why wire type very much effects resistance. Temperature of the Wire All atoms vibrate, even in a unit cell when they are tied down with bonds. If the temperature increases so does the rate of vibration. If the atoms are vibrating vigorously then the chances of a collision

  2. The effect of the temperature on the viscosity of the syrup.

    0.00625 51.2 30% 150 5324 214 25 0.00117 274 81% 100 5324 514 25 0.000486 658 58% 50 5324 418 25 0.000598 535 -23% Results from set 1, 2 and 3 have been averaged in the table below Temperature Viscosity Nsm-2 (SET 1)

  1. Measuring the Viscosity of Honey

    Details are provided below. Radius (mm) Terminal velocity (ms-1) Graph: A Graph should be plotted of terminal velocity against radii such that : Upthrust + viscous drag = weight 4/3 ?r3 ?f g + 6?r?? = 4/3 ?r3 ?s g 2/3 r2 ?f g + 3r??

  2. Investigation into the effect of temperature on viscosity

    27.2 30.6 27.5 28.4 46.2 290 (17�C) 14.6 14.9 14.7 14.7 24.0 293 (20�C) 9.1 9.5 9.5 9.4 15.3 296 (23�C) 5.7 5.6 9.7 7.0 11.4 299 (26�C) 4.3 4.2 4.3 4.3 7.0 303 (30�C) 3.3 3.5 3.9 3.6 5.8 While carrying out the experiment an unexpected recording was made at 284K (11�C).

  1. Practical Investigation Into Viscosity

    There are many factors that affect the descent of an object through a liquid such as: 1) Temperature of the liquid 2) Mass* of object 3) Size/surface area of object 4 Viscosity of liquid 5) Angle of descent Temperature I would like to investigate the correlation between temperature and time of descent.

  2. Investigation into Friction.

    Another problem to using this type of apparatus would be that it would take more time to undertake the experiment and also to set up the experiment than it would with the apparatus in Fig 3, which we will be using.

  1. Investigating the viscosity of liquids.

    is the density of water, ?steel is the density of steel, and v is the terminal velocity at which the sphere travels at. We could now rearrange the formula to find the viscosity, �: F = W - U 6?r?v = 4?r3?fluidg / 3 - 4?r3?steel g / 3 (Cancel out ?

  2. Liquid Friction.

    liquid that has been displaced by the ball by finding the balls volume and multiplying it by the density of the liquid. = x = = We can therefore equate this. This gives us the force in Newton's. Force (buoyancy)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work