• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14

Experimental Techniques; Analysis of Boundary Layer Data.

Extracts from this document...

Introduction

Joseph Gransden        Case Study 3: Experimental Techniques        10/05/07

CASE STUDY 3: Experimental Techniques; Analysis of Boundary Layer Data

By Joseph Gransden

Department of Mechanical Engineering, Nottingham University

The following report is an experimental study of Boundary layer data obtained using hot-wire anemometry. In particular, the report presents and analyses mean velocity and turbulence intensity profiles as well as turbulence statistics. The aim is to discover the best methods of presenting and analysing data in order to determine and explain some of the turbulence phenomena by discussion of the data and its implications.

RESULTS  

Firstly the hot wire anemometer output voltage is calibrated using King’s Law against the velocities that are initially measured with a pitot tube or vane anemometer.

Hot-wire Calibration Data

Mean

Mean

Hot-wire

Velocity

Voltage

E

E2

U

U1/2

Volts

m/s

1.4227

2.02407529

1.02

1.00995

1.4466

2.09265156

1.222

1.105441

1.4687

2.15707969

1.441

1.200417

1.5002

2.25060004

1.785

1.336039

1.5204

2.31161616

2.029

1.42443

1.534

2.353156

2.198

1.482565

1.5507

2.40467049

2.434

1.560128

1.5684

2.45987856

2.689

1.639817

1.5837

2.50810569

2.928

1.71114

1.5979

2.55328441

3.16

1.777639

1.6115

2.59693225

3.407

1.845806

1.6252

2.64127504

3.656

1.912067

1.6366

2.67845956

3.886

1.971294

1.6488

2.71854144

4.132

2.032732

1.6599

2.75526801

4.378

2.092367

1.6712

2.79290944

4.629

2.151511

1.6814

2.82710596

4.869

2.206581

KINGS LAW

E2 = A + B(U)1/2

Where, B = slope =

0.6718895

from chart overleaf

and A = y - intercept =

1.35315794

Therefore,

E2 = 1.353 + 0.672(U)1/2

image00.png

This calibration then allows for the mean and fluctuating velocities (turbulence intensity) to be determined.

...read more.

Middle

The boundary layer thickness has been approximated here using the definition provided by F.M White. That is:

Boundary Layer thickness,        δ = ywhere u = 0.99U0

U/U0

dy

1-U/U0

Trap Areas

U/U0*(1-U/U0)

Trap Areas

y

u'/U0

(y/δ)1/7

mm

0.088077447

0.3

0.91192

0.13678838

0.080319811

0.01204797

0.005

0.018977

0.46933

0.103154735

0.1

0.89685

0.09043839

0.092513835

0.00864168

0.0067

0.045354

0.48902

0.124079962

0.1

0.87592

0.08863827

0.108684125

0.0100599

0.0084

0.063321

0.50486

0.15541488

0.1

0.84459

0.08602526

0.131261095

0.01199726

0.01

0.079471

0.51818

0.182124266

0.1

0.81788

0.08312304

0.148955018

0.01401081

0.0117

0.098874

0.52972

0.211948564

0.1

0.78805

0.08029636

0.16702637

0.01579907

0.0134

0.104896

0.53992

0.273886695

0.2

0.72611

0.15141647

0.198872773

0.03658991

0.0167

0.12431

0.55741

0.332334653

0.2

0.66767

0.13937787

0.221888332

0.04207611

0.0201

0.14249

0.57211

0.380250394

0.3

0.61975

0.19311224

0.235660032

0.06863225

0.0251

0.152747

0.59065

0.462601881

0.5

0.5374

0.28928693

0.248601381

0.12106535

0.0334

0.151193

0.61543

0.517238474

0.5

0.48276

0.25503991

0.249702835

0.12457605

0.0418

0.145951

0.63536

0.567915838

0.5

0.43208

0.22871142

0.245387439

0.12377257

0.0502

0.139529

0.65213

0.599502832

0.5

0.4005

0.20814533

0.240099186

0.12137166

0.0585

0.129714

0.66665

0.615678193

0.5

0.38432

0.19620474

0.236618556

0.11917944

0.0669

0.125845

0.67948

0.61744223

0.5

0.38256

0.19171989

0.236207323

0.11820647

0.0752

0.117982

0.69101

0.63524808

0.5

0.36475

0.18682742

0.231707957

0.11697882

0.0836

0.117829

0.70149

0.658847958

1

0.34115

0.35295198

0.224767326

0.22823764

0.1003

0.105211

0.72001

0.672233025

1

0.32777

0.33445951

0.220335785

0.22255156

0.117

0.102512

0.73604

0.680154293

1

0.31985

0.32380634

0.217544431

0.21894011

0.1337

0.102262

0.75021

0.684370372

1

0.31563

0.31773767

0.216007566

0.216776

0.1505

0.096433

0.76294

0.699011857

1

0.30099

0.30830889

0.210394281

0.21320092

0.1672

0.099254

0.77451

0.715766

2

0.28423

0.58522214

0.203445033

0.41383931

0.2006

0.091777

0.79495

0.739622481

3

0.26038

0.81691728

0.192581067

0.59403915

0.2508

0.095419

0.8207

0.780600965

5

0.2194

1.19944139

0.171263099

0.90961041

0.3344

0.088862

0.85513

0.816117886

5

0.18388

1.00820287

0.150069482

0.80333145

0.418

0.084794

0.88283

0.850451416

5

0.14955

0.83357674

0.127183805

0.69313322

0.5016

0.07836

0.90613

0.880719308

5

0.11928

0.67207319

0.105052808

0.58059153

0.5851

0.074942

0.9263

0.912188242

5

0.08781

0.51773112

0.080100853

0.46288415

0.6687

0.067026

0.94414

0.938074298

5

0.06193

0.37434365

0.058090909

0.34547941

0.7523

0.060058

0.96016

0.956916358

5

0.04308

0.26252336

0.041227442

0.24829588

0.8359

0.052861

0.97472

0.974824407

5

0.02518

0.17064809

0.024541782

0.16442306

0.9195

0.044776

0.98809

0.990586663

5

0.00941

0.08647232

0.009324726

0.08466627

1.0031

0.030344

1.00044

0.997052505

5

0.00295

0.03090208

0.002938807

0.03065883

1.0867

0.019951

1.01195

0.99764158

5

0.00236

0.01326479

0.002352858

0.01322916

1.1703

0.014744

1.02272

1.001180482

5

-0.0012

0.00294484

-0.00118188

0.00292745

1.2539

0.009536

1.03285

1.001180482

5

-0.0012

-0.0059024

-0.00118188

-0.0059094

1.3375

0.007602

1.04242

1

10

0

-0.0059024

0

-0.0059094

1.5047

0.00565

1.0601

1

10

0

0

0

0

1.6719

0.005635

1.07618

Bulk Velocity, U0 =

2.44780599

0.99U0 =

2.42332793

Boundary Layer Thickness =

59.81390261

Displacement Thickness

δ* =

10.80487536

mm

Momentum Thickness

θ =

7.500002088

mm

Shape Factor

H =

1.440649647

image15.png

image16.png

To find the correct logarithmic velocity profile the Clauser plot technique was employed varying the friction velocity, u* to ‘match’ the logarithmic region of the profile to the known log law. This provided a graphical means of determining u*. Also on the following is the linear viscous sublayer plot of u+ = y+.

...read more.

Conclusion

  From the PDF a skewness of 1.102 and kurtosis of –0.137. These are analogous to the asymmetry and flatness of the plot respectively. It is already known that in free shear flows the PDF is not Gaussian. The skewness is to the left, hence there is higher frequency of negative streamwise velocities at the position y+ = 2 therefore suggesting maybe a high influence of spanwise, vortical structures in the linear viscous sublayer.  As we are concerned with the region close to the wall the spanwise vortices are in fact induced by the zero velocity retardation at the wall and the shear layer formation.

It is also worth noting that the negative sign on the kurtosis has no significance.

References

  • KLINE et al (1967) “ The structure of turbulent boundary layers”. J of Fluid Mech. Vol 30 pp 741- 773
  • CHOI K-S (2001) “ Boundary layers” Fluid Mechanics 2 notes.
  • WHITE F.M (2000) “Fluid Mechanics”
  • POPE S.B (2000) “Turbulent flows”

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Peer reviewed

    Factors Influencing Resistance of a Wire

    3 star(s)

    length of wire increases so does the number of atoms, which in turn increases the likelihood of a collision between the positive ions and the moving electrons. Should the length of wire double, so must the number of positive ions which in turn means the resistance should double.

  2. Investigation into Friction.

    to overcome the frictional forces would have been less, leading to the results obtained. This line of best fit does not go through the origin either, as predicted. This could be because of the changing friction between the surfaces, as they are worn down and smoothed off.

  1. The effect of the temperature on the viscosity of the syrup.

    Then repeat the same procedure as for 500 for 150, 100and 50. 18) Repeat the whole procedure for the following temperatures three times: 500, 450, 400, 350 , 300, 250, 200, 150, 100and 50 Fair test The independent variable in this investigation will be the temperature of the syrup.

  2. Pressure distribution over a symmetrical airfoil.

    Reynolds number is defined by: RE = Uc/V Where U is the free stream velocity, V is the kinematics velocity and c is the length of the chord.

  1. Practical Investigation Into Viscosity

    He was not just a scientist, but also the prototype of the modern engineer. In his work can be seen the rigorous error checking that set the standards for later workers. Although Reynolds is best known for his number, few fields of science and engineering are not touched with his life's work.

  2. Investigation into the effect of temperature on viscosity

    A micrometer screw gauge will be used to accurately measure the diameter of the ball bearing in use. 6) The stop watch will be setup and readied while the correct temperature is being met. The hot temperatures will be met by heating the honey to the desired temperature (through the transfer of heat energy from the hot water).

  1. Approximate Stopping Distances

    Gravel, grit and oil spills on the road disrupt the braking distance. The weight of the car is a large factor for the amount of distance covered until the vehicle comes to a stand still. The heavier the car the longer it will take to stop, but this is not

  2. Investigating the viscosity of liquids.

    This can be related to a real life situation, where a skydiver jumps off his plane. The theory of viscous drag can be used to explain 'air resistance'. When the skydiver first jumps off the plane, he will first accelerate due to a net downward force, where the weight of the skydiver being much greater than the upthrust.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work