• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14

Experimental Techniques; Analysis of Boundary Layer Data.

Extracts from this document...

Introduction

Joseph Gransden        Case Study 3: Experimental Techniques        10/05/07

CASE STUDY 3: Experimental Techniques; Analysis of Boundary Layer Data

By Joseph Gransden

Department of Mechanical Engineering, Nottingham University

The following report is an experimental study of Boundary layer data obtained using hot-wire anemometry. In particular, the report presents and analyses mean velocity and turbulence intensity profiles as well as turbulence statistics. The aim is to discover the best methods of presenting and analysing data in order to determine and explain some of the turbulence phenomena by discussion of the data and its implications.

RESULTS  

Firstly the hot wire anemometer output voltage is calibrated using King’s Law against the velocities that are initially measured with a pitot tube or vane anemometer.

Hot-wire Calibration Data

Mean

Mean

Hot-wire

Velocity

Voltage

E

E2

U

U1/2

Volts

m/s

1.4227

2.02407529

1.02

1.00995

1.4466

2.09265156

1.222

1.105441

1.4687

2.15707969

1.441

1.200417

1.5002

2.25060004

1.785

1.336039

1.5204

2.31161616

2.029

1.42443

1.534

2.353156

2.198

1.482565

1.5507

2.40467049

2.434

1.560128

1.5684

2.45987856

2.689

1.639817

1.5837

2.50810569

2.928

1.71114

1.5979

2.55328441

3.16

1.777639

1.6115

2.59693225

3.407

1.845806

1.6252

2.64127504

3.656

1.912067

1.6366

2.67845956

3.886

1.971294

1.6488

2.71854144

4.132

2.032732

1.6599

2.75526801

4.378

2.092367

1.6712

2.79290944

4.629

2.151511

1.6814

2.82710596

4.869

2.206581

KINGS LAW

E2 = A + B(U)1/2

Where, B = slope =

0.6718895

from chart overleaf

and A = y - intercept =

1.35315794

Therefore,

E2 = 1.353 + 0.672(U)1/2

image00.png

This calibration then allows for the mean and fluctuating velocities (turbulence intensity) to be determined.

...read more.

Middle

The boundary layer thickness has been approximated here using the definition provided by F.M White. That is:

Boundary Layer thickness,        δ = ywhere u = 0.99U0

U/U0

dy

1-U/U0

Trap Areas

U/U0*(1-U/U0)

Trap Areas

y

u'/U0

(y/δ)1/7

mm

0.088077447

0.3

0.91192

0.13678838

0.080319811

0.01204797

0.005

0.018977

0.46933

0.103154735

0.1

0.89685

0.09043839

0.092513835

0.00864168

0.0067

0.045354

0.48902

0.124079962

0.1

0.87592

0.08863827

0.108684125

0.0100599

0.0084

0.063321

0.50486

0.15541488

0.1

0.84459

0.08602526

0.131261095

0.01199726

0.01

0.079471

0.51818

0.182124266

0.1

0.81788

0.08312304

0.148955018

0.01401081

0.0117

0.098874

0.52972

0.211948564

0.1

0.78805

0.08029636

0.16702637

0.01579907

0.0134

0.104896

0.53992

0.273886695

0.2

0.72611

0.15141647

0.198872773

0.03658991

0.0167

0.12431

0.55741

0.332334653

0.2

0.66767

0.13937787

0.221888332

0.04207611

0.0201

0.14249

0.57211

0.380250394

0.3

0.61975

0.19311224

0.235660032

0.06863225

0.0251

0.152747

0.59065

0.462601881

0.5

0.5374

0.28928693

0.248601381

0.12106535

0.0334

0.151193

0.61543

0.517238474

0.5

0.48276

0.25503991

0.249702835

0.12457605

0.0418

0.145951

0.63536

0.567915838

0.5

0.43208

0.22871142

0.245387439

0.12377257

0.0502

0.139529

0.65213

0.599502832

0.5

0.4005

0.20814533

0.240099186

0.12137166

0.0585

0.129714

0.66665

0.615678193

0.5

0.38432

0.19620474

0.236618556

0.11917944

0.0669

0.125845

0.67948

0.61744223

0.5

0.38256

0.19171989

0.236207323

0.11820647

0.0752

0.117982

0.69101

0.63524808

0.5

0.36475

0.18682742

0.231707957

0.11697882

0.0836

0.117829

0.70149

0.658847958

1

0.34115

0.35295198

0.224767326

0.22823764

0.1003

0.105211

0.72001

0.672233025

1

0.32777

0.33445951

0.220335785

0.22255156

0.117

0.102512

0.73604

0.680154293

1

0.31985

0.32380634

0.217544431

0.21894011

0.1337

0.102262

0.75021

0.684370372

1

0.31563

0.31773767

0.216007566

0.216776

0.1505

0.096433

0.76294

0.699011857

1

0.30099

0.30830889

0.210394281

0.21320092

0.1672

0.099254

0.77451

0.715766

2

0.28423

0.58522214

0.203445033

0.41383931

0.2006

0.091777

0.79495

0.739622481

3

0.26038

0.81691728

0.192581067

0.59403915

0.2508

0.095419

0.8207

0.780600965

5

0.2194

1.19944139

0.171263099

0.90961041

0.3344

0.088862

0.85513

0.816117886

5

0.18388

1.00820287

0.150069482

0.80333145

0.418

0.084794

0.88283

0.850451416

5

0.14955

0.83357674

0.127183805

0.69313322

0.5016

0.07836

0.90613

0.880719308

5

0.11928

0.67207319

0.105052808

0.58059153

0.5851

0.074942

0.9263

0.912188242

5

0.08781

0.51773112

0.080100853

0.46288415

0.6687

0.067026

0.94414

0.938074298

5

0.06193

0.37434365

0.058090909

0.34547941

0.7523

0.060058

0.96016

0.956916358

5

0.04308

0.26252336

0.041227442

0.24829588

0.8359

0.052861

0.97472

0.974824407

5

0.02518

0.17064809

0.024541782

0.16442306

0.9195

0.044776

0.98809

0.990586663

5

0.00941

0.08647232

0.009324726

0.08466627

1.0031

0.030344

1.00044

0.997052505

5

0.00295

0.03090208

0.002938807

0.03065883

1.0867

0.019951

1.01195

0.99764158

5

0.00236

0.01326479

0.002352858

0.01322916

1.1703

0.014744

1.02272

1.001180482

5

-0.0012

0.00294484

-0.00118188

0.00292745

1.2539

0.009536

1.03285

1.001180482

5

-0.0012

-0.0059024

-0.00118188

-0.0059094

1.3375

0.007602

1.04242

1

10

0

-0.0059024

0

-0.0059094

1.5047

0.00565

1.0601

1

10

0

0

0

0

1.6719

0.005635

1.07618

Bulk Velocity, U0 =

2.44780599

0.99U0 =

2.42332793

Boundary Layer Thickness =

59.81390261

Displacement Thickness

δ* =

10.80487536

mm

Momentum Thickness

θ =

7.500002088

mm

Shape Factor

H =

1.440649647

image15.png

image16.png

To find the correct logarithmic velocity profile the Clauser plot technique was employed varying the friction velocity, u* to ‘match’ the logarithmic region of the profile to the known log law. This provided a graphical means of determining u*. Also on the following is the linear viscous sublayer plot of u+ = y+.

...read more.

Conclusion

  From the PDF a skewness of 1.102 and kurtosis of –0.137. These are analogous to the asymmetry and flatness of the plot respectively. It is already known that in free shear flows the PDF is not Gaussian. The skewness is to the left, hence there is higher frequency of negative streamwise velocities at the position y+ = 2 therefore suggesting maybe a high influence of spanwise, vortical structures in the linear viscous sublayer.  As we are concerned with the region close to the wall the spanwise vortices are in fact induced by the zero velocity retardation at the wall and the shear layer formation.

It is also worth noting that the negative sign on the kurtosis has no significance.

References

  • KLINE et al (1967) “ The structure of turbulent boundary layers”. J of Fluid Mech. Vol 30 pp 741- 773
  • CHOI K-S (2001) “ Boundary layers” Fluid Mechanics 2 notes.
  • WHITE F.M (2000) “Fluid Mechanics”
  • POPE S.B (2000) “Turbulent flows”

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Peer reviewed

    Factors Influencing Resistance of a Wire

    3 star(s)

    length of wire increases so does the number of atoms, which in turn increases the likelihood of a collision between the positive ions and the moving electrons. Should the length of wire double, so must the number of positive ions which in turn means the resistance should double.

  2. Investigation into Friction.

    to overcome the frictional forces would have been less, leading to the results obtained. This line of best fit does not go through the origin either, as predicted. This could be because of the changing friction between the surfaces, as they are worn down and smoothed off.

  1. The effect of the temperature on the viscosity of the syrup.

    Wait until the temperature falls down to 450 and repeat the procedure as for the 500 16) Repeat the whole procedure for the following temperatures three times: 500, 450, 400, 350 , 300, 250 and 200 17) Now place the measuring cylinder into the freezer and remove it when the temperature reaches 50.

  2. Practical Investigation Into Viscosity

    Sometimes it is necessary to figure out if the dominant variable is the viscous flow or inertial flow. Osborne Reynolds Aug 23, 1842 - Feb 21, 1912 There is no way to do justice in describing Reynolds work; that would require a book.

  1. Investigation into the effect of temperature on viscosity

    functionality of the stopwatch and heating equipment. 2) Next the apparatus will be setup as in diagram 3. 3) Stability of the apparatus will now be checked. 4) The markings will be added using a pen and ruler, the distance markings are made with a gap of 11cm.

  2. Investigating the viscosity of liquids.

    and r from each side, multiply each side by 6 and divide each side by 2): 9?v = 2r2?steel g - 2r2?fluidg (take 2r2g as the common factor of the right hand side and make ? the subject): ? = 2r2 g (?steel - ?fluid)

  1. Mousetrap Report

    accommodate the wheels but not too much rod or the wheels will rub against the mousetrap. Remember the further the wheels from the car the greater inertia they create. 8. Attach the wheel mounts to the axles creating a car structure, adding plenty of lubricant to the joining between the axle and the sub frame.

  2. Measuring the Viscosity of Honey

    Distance - In order to make accurate measurements on the terminal velocity of the ball bearings the distance over which their speed is measured must be kept constant and must be selected so that accurate times can be generated. In this investigation, I will divide the cylinder to 4 parts,

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work