• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

Factors affecting the resistance of a wire

Extracts from this document...

Introduction

RESISTANCE OF A WIRE INVESTIGATION

Skill Area P; Planning Experimental Procedure

Hypothesis

Four factors affecting the resistance of a wire are:

·  The temperature of the wire.  If the wire is hotter than usual then electrons are given more energy and collision is more frequent.  Therefore the resistance is greater.

·  The length of the wire.  The length of the wire is directly proportional to the resistance and so if the length of the wire is longer, then the resistance of the wire is greater.

·  The width of the wire.  Thick wires have more free electrons per unit cross-sectional area than thin wires.  Therefore thicker wires will have a larger resistance than thinner wires

·  The metal that the wire is made out of.  Some metals conduct heat easier and quicker than others.  All metals are good conductors because there are lots of free electrons to move between the atoms of the metal.

Prediction

If the length of the wire is doubled, then the resistance will double.  This means that the resistance is proportional to the length of the wire.

As the length of the wire is increased, there are more atoms present for electrons to collide with and therefore resistance is greater.  More and more atoms can also collide and collisions become more imminent.  There are more and more free electrons and when the electrons collide with atoms, energy is transferred to the atoms that start to vibrate and the material becomes hotter.

...read more.

Middle

90.0

0.40

3.64

9.10

90.0

0.50

4.53

9.06

90.0

0.60

5.46

9.10

Average Resistance:

9.04

Length of a wire (centimetres)

Current I (Amperes)

Voltage V (volts)

Resistance R=V/I (ohms)

80.0

0.20

1.59

7.95

80.0

0.30

2.43

8.10

80.0

0.40

3.25

8.13

80.0

0.50

4.05

8.10

80.0

0.60

4.88

8.13

Average Resistance:

8.08

Length of a wire (centimetres)

Current I (Amperes)

Voltage V (volts)

Resistance R=V/I (ohms)

70.0

0.20

1.42

7.10

70.0

0.30

2.15

7.17

70.0

0.40

2.87

7.18

70.0

0.50

3.57

7.14

70.0

0.60

4.30

7.17

Average Resistance:

7.15

Length of a wire (centimetres)

Current I (Amperes)

Voltage V (volts)

Resistance R=V/I (ohms)

60.0

0.20

1.20

6.00

60.0

0.30

1.81

6.03

60.0

0.40

2.44

6.10

60.0

0.50

3.05

6.10

60.0

0.60

3.65

6.08

Average Resistance:

6.06

Length of a wire (centimetres)

Current I (Amperes)

Voltage V (volts)

Resistance R=V/I (ohms)

50.0

0.20

0.99

4.95

50.0

0.30

1.50

5.00

50.0

0.40

2.04

5.10

50.0

0.50

2.53

5.06

50.0

0.60

3.07

5.12

...read more.

Conclusion

Anomalous Readings

There are no anomalous readings in my results.  All my results are touching or very close to the line of best fit.  This just shows how successful my experiment actually was.  However if there were anomalous readings then I would have identified them on my graph and tables as anomalous.

Improving the Accuracy of the Readings

My readings are very accurate, however if I wanted to make them even more accurate I could use a digital ammeter rather than an analogue ammeter that I used in my experiment.  This way I could simply read the current and the readings would probably be to 2 decimal places.  Therefore my results would be much more accurate.

Improving the Reliability of the Evidence

To improve the reliability of my readings I could have repeated the experiment more times.  Also, I could have even used a much more higher scale with the length of wire such as 10cm to 300cm.  We could also use a data logger to measure readings.  Data loggers are much more accurate as they measure digitally through a computer.  We could also use improved contacts on wire; so we don’t have any rusty wires etc.  We could also use intervals of 5 centimetres to get twice as many points on the graph.

Kai Baker

10 Alpha

Physics Coursework

Mr O’Malley

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    The factors affecting the resistance of a metalic conductor.

    4 star(s)

    = 0.08/0.55 = 0.145 Therefore; R = 1/0.145 = 6.8 > 50 cm Gradient = 0.25 - 0.21/1.25 - 1.03 = 0.035/0.22 = 0.159 Therefore; R = 1/0.159 = 6.2 Below is my observation table that compares the value of R from my tabular calculations and the value of R

  2. Physics GCSE Coursework:Factors affecting the resistance of a wire

    of the material , so if there is a larger number of atoms there will be a larger number of collisions that will increase the resistance of the wire. If a width of a wire contains a certain number of atoms when that width is increased the number of atoms will also increase.

  1. Discover the factors affecting resistance in a conductor.

    Ammeter: Same reasons as the voltmeter, but placed in series in the circuit Digital Multimeter: This will also be used for different circuits. Useful, because it generates its own power supply and can also convert the amps and volt directly into resistance.

  2. An investigation into the factors affecting the resistance of a wire.

    I have chosen to use these lengths (every 10cm) because they are easily measured by the meter ruler and give a good range of results. * Once I have my first full set of results I will repeat the test a further two times.

  1. Factors affecting Resistance of a wire

    The secondary sources I used to research my experiment were; the Internet, several physics websites, GCSE Physics cd-rom by DK. The two factors that I have chosen & my prediction: I have chosen wire length and the cross sectional area because they are the most effective and easiest factor to measure.

  2. Investigate one or more factors affecting the resistance of metal wires

    Research of factors affecting the resistance of a wire Length As the length of wire increases, the number of collisions the current carrying the charged particles (the electrons) make with the ions in the metal also increases therefore giving a greater resistance.

  1. Investigating the factors affecting the resistance in a wire

    of amperes (A), V is the potential difference measured across the conductor in units of volts (V) and R is the resistance of the conductor in units of ohms (?). In circuits, three equivalent expressions of Ohm's Law can be used interchangeably: The interchangeability of the equation may be represented be a triangle (see Figure 4), where V (voltage)

  2. To investigate the factors affecting current in a wire.

    And also it would be easier to spot the difference. Because if there was a small error in the reading, it'll have a significant effect on the value of resistance calculated. However, I found that using this was a contributing factor in the heat produced.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work