• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Find out what affects the height of the rebound of a bouncing squash ball.

Extracts from this document...


                Jordan Hoose

Squash Balls Coursework


The aim of this experiment is to find out what affects the height of the rebound of a bouncing squash ball.

There are several potential variables that we could change; as there are several factors that affect the bounce of a squash ball. These factors are; the height that the ball is dropped from, the temperature of the ball, the mass of the ball and the surface area of the ball. The variable that I am going to change for my investigation will be the temperature of the ball.


I predict that as I increase the temperature of the ball the height of the rebound will increase.

The reason for this happening is because if a ball has a high temperature, the atoms vibrate more. When the ball hits the ground the vibrating particles push the other atoms within the ball in the opposite direction. This makes the ball bounce higher than it would if the atoms were not vibrating as much.

However, if a ball has a low temperature, the opposite happens. Because the particles inside the ball do not have much energy, they are less energetic, and so when the ball hits the ground, the particles push each other with little force; consequently the height of the bounce is smaller.

Despite this, I believe that, even when the ball

...read more.


I will carefully watch the thermometer so that I will know when the correct temperature has been reached. When that temperature has been reached, I will take the ball out of the beaker using the tongs.I will then hold the ball 1m up from the ground. (I will measure this distance using a metre ruler.) I will drop the ball from this height and, as the ball rebounds upwards, I will record the point at which the ball is highest. (I will only measure this to the nearest centimetre, as it would be too difficult to measure it any more precisely.)

Here is a labelled diagram of the apparatus (not shown here are the tongs that were used to keep the ball underwater and to get the ball out of the glass beaker):


        I will attempt to make sure that my results are reliable by repeating the experiment for each temperature three times. As I have already stated, the variable that I am going to change for this investigation will be the temperature. In order to ensure that bias is minimal in this investigation, I will need to control all of the other variables. These include the surface that the ball will be landing on, the type of ball (meaning that I will have to use the same ball for each experiment) and the height from which the ball will be dropped. (The surface that the ball will be landing on shall be the table.)

...read more.


        Another aspect of this investigation that was inaccurate was in the fact that when I dropped the ball, it sometimes bounced awkwardly against the clamp-stand, meaning I would have to drop the ball again. This happened several times during the investigation. Between the time that it bounced awkwardly and it was dropped again, the ball will have had time to cool down, so the ball may have been at a temperature of 88°C instead of 90°C.

        Another inaccurate factor of this investigation was that it was very difficult to see the point at which the ball was highest, so an incorrect recording may have been written down at times. This problem could be resolved if I had a video-camera, so I would be able to play it back and get a closer look at when the ball is at it’s highest point.

        I believe that all of these factors that I have mentioned contribute towards explaining the anomalous result in my results table. These inaccuracies also make my evidence unreliable to some extent, although I do believe that the evidence that I have gained from this investigation is reliable enough to confirm my belief in the relationship between the height of the bounce and the temperature of the ball. If I did want to confirm my belief in the trend, I could carry out experiments for more extreme temperatures, for example, 0°C or 110°C, and see if they confirm the trend.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Peer reviewed

    Investigating factors that affect the bounce height of a squash ball

    5 star(s)

    Use the same ball throughout the experiment Bounce height This is the dependent variable, and it will be investigated, measured and recorded Measured in m. 4) Preliminary Work My preliminary work involved running the experiment through as I planned to do to obtain the results to be used in this investigation.

  2. My aim is to investigate how the temperature has an effect on the height ...

    are any patterns and how the results relate to the line of best fit. To ensure the test is fair For each beaker I will be using the same amount of water to make the test fair, and I will make sure that the water in the water bath remains

  1. In this experiment I am going to find out how and why the temperatures ...

    One trend is immediately obvious; the rebound height increases with temperature. Graph of Mean Results The graph shows a clear relationship between height achieved and temperature. As the temperature is increased the bounce height increases also. At a low temperature the squash ball doesn't bounce very high, but the rebound gets greater and greater, steadily increasing with temperature.

  2. Bouncing Ball Experiment

    KE = 1/2mv� where m = mass and v = velocity Thus: 1/2mv� = mhg - thermal energy (lost as a result of drag) As drag is a squared function, proportional to the square of the velocity, it is impossible to calculate the velocity that the ball hits the floor at.

  1. What factors affect the bounce of a squash ball?

    being applied. So as the temperature of the ball became warmer the atoms inside the ball began to vibrate more vigorously.

  2. Squash Ball and Temperature Investigation

    Now that the general physics behind a bouncing ball can be understood, I can begin to explain my prediction of increasing the temperate of a ball and how this will affect its bounce. A theory, which links into this prediction, is the Kinetic Theory.

  1. Aim To see how the efficiency of a bouncing ball ...

    If a ball were completely 100% efficient, then no energy would be lost during the bouncing process. For this to happen, no energy can be lost with sound or thermal energy due to friction. If a ball lost none of this energy whilst being dropped and hitting the floor, it

  2. Investigating the amazingness of theBouncing Ball!

    amounts to the same thing, the amount of work that must have been done on it to increase its velocity from zero to the velocity it has at that point, or vice-versa as the ball bounces. Basically, if a body of mass m is moving with velocity v then K.E.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work