• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Find the exact concentration of sulphuric acid in a solution through a titration.

Extracts from this document...

Introduction

Salters Chemistry coursework Aim: To find the exact concentration of sulphuric acid in a solution through a titration. The titration is between sulphuric acid and sodium carbonate has to be in liquid for in order to carry out the experiment so it is dissolved into distilled water to a concentration of 0.1 mol dm� Introduction- During the extraction of a metal from its ore, sulphuric dioxide is often produced. This is converted to sulphuric acid and is sold as a useful by-product. I am going to be given a sample of sulphuric acid, which is thought to have a concentration between 0.05 and 0.15-mol dm�. The purpose of this experiment is to find the accurate concentration of the sulphuric acid. I will do this by carrying out a titration between sulphuric acid and sodium carbonate solution. Therefore this is an acid-alkali titration (which is the determination of concentration by adding measured amounts of standard reagents to a known volume until the end point is reached). * Sulphuric acid is considered a strong acid, as it is completely in the form of ions in dilute solution. * Sodium carbonate is a weak alkali as it only partially forms ions in dilute solution. ...read more.

Middle

Keep the flow rapid till the colour changes to a lighter red, but before this turn the stopcock slightly horizontal as the acid comes out drop by drop. 12. Read off the value on the burette find out the volume of sulphuric acid needed to react with sodium carbonate. 13. Carry out the titrations Until you have recorded three results within 0.1cm� CONTROL VARIABLES Ensure the same sodium carbonate solution and sulphuric acid batch is used for all titration to ensure a fair test and the results will be accurate and reliable. Try to carry out the titrations on the same day to ensure there isn't a temperature change and that they are done in one uniform temperature. If the temperature is increased, the liquid will expand making the test inaccurate. RISK ASSESMENT * Wear safety goggles to prevent acid from entering the eye * Stools must be tucked underneath the table ensure bags are out of the way to prevent people from tripping * Long hair should be tied back * Ensure you are standing throughout the experiment so you are able to quickly move out of the way in case of spillages etc. ...read more.

Conclusion

It was important to keep a specific colour in mind, and stop the titration when the colour was reached. Fortunately I kept the colour change point constant, although this could have been a cause of any anomalies. To improve the investigation a pH metre can be used instead of using a pH indicator to see when neutralisation occurs. This would eliminate the most significant source of error, which is largely due to human error. I could have further improved the experiment by checking the pipette filler for air gaps. Also using a magnetic stirrer would have ensured all the sodium carbonate was completely dissolved. I could have used more accurate scale -analytical balance which measure to 0.0001g so it has a high degree of precision Percentage error I am going to work out the percentage error using the following equation: (True value- experimental value) � 100 True value Quantity measured Percentage error Mass of sodium carbonate using balance (0.05�100)/2.65=0.19% Volume of distilled water using volumetric flask (0.5�100)/250=0.2% Transferring sodium carbonate using pipette filler (0.5�100)/25=2% Carrying out titration using a burette (0.005�100)/28.43=0.02% (to 2.s.f) In order to minimise measurements errors larger quantities of all solution could be used although concentration would remain the same. For example 250 cm� graduated flask 0.2 � 100 = 0.08% 250 1 dm� flask 0.2 �100 = 0.02% 1000 Saher Ali 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Marked by a teacher

    Enthalpy of Neutralisation.

    3 star(s)

    So if I react equal volumes of the same molar concentrations of NaOH and HCl I am reacting the same number of atoms together therefore equal concentrations produce the highest temperature rise. EXPERIMENT 1: Sodium hydroxide (NaOH) and hydrochloric acid (Hcl).

  2. In this experiment I am finding out how much sulphuric acid is present in ...

    be poured out this allows the entire inside of the burette to be coated with rinse. A burette should be set up and filled with the acid solution; in this case it is Sulphuric acid (H2SO4). A small funnel should be used, to avoid sulphuric acid from spilling, and the sulphuric acid should be added to the burette slowly.

  1. In order to find out the exact concentration of sulphuric acid, I will have ...

    * Wear a lab coat to protect your skin from being irritated and clothes from getting damaged. * Wear goggles at all times to prevent eye injury. * Tie hair back and remove any jewellery, so that it does not become a hazard.

  2. Softening hard water with sodium carbonate (Na2CO3)

    I had hoped for a clearer demonstration of this effect however my results were reasonable within the margin of experimental error. Water is made hard by dissolved calcium ions, Ca2+, when placed into a solution Na2CO3 splits up into Na+ ions and CO32- ions, the CO32- ions combine with the

  1. To carry out a titration between a strong acid and a weak alkali, to ...

    Wash out any remains on the funnel using distilled water to ensure accuracy of the sodium carbonate solution. 7. Add distilled water to the volumetric flask until the solution is close to the graduation mark. Then use a pipette to make sure the bottom of the meniscus of the solution sits on the graduation mark.

  2. Determine the concentration of sulphuric acid by acid-base titration.

    * White tile: used to make colour changes clearer. * Weighing bottle: to place the accurate amount anhydrous sodium carbonate. * 250cm3 beakers (2): used for mixing anhydrous sodium carbonate with distilled water. * Graduated volumetric flask: used to make up a solution of fixed volume very accurately * Electronic balance: used to weight the accurate amount anhydrous sodium carbonate.

  1. The Use of Volumetric Flask, Burette and Pipette in Determining the Concentration of NaOH ...

    which shows the point of neutralization by a distinct color change can be used. Simple stoichiometric calculations with the known volume of the unknown and the known volume and molarity of the added chemical gives the molarity of the unknown.

  2. Planning of Titration

    If an air bubble is present during a titration, volume readings may be in error. * Rinse the tip of the burette with water from a wash bottle and dry it carefully. After a minute, check for solution on the tip to see if your burette is leaking.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work