• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Find the exact concentration of sulphuric acid in a solution through a titration.

Extracts from this document...

Introduction

Salters Chemistry coursework Aim: To find the exact concentration of sulphuric acid in a solution through a titration. The titration is between sulphuric acid and sodium carbonate has to be in liquid for in order to carry out the experiment so it is dissolved into distilled water to a concentration of 0.1 mol dm� Introduction- During the extraction of a metal from its ore, sulphuric dioxide is often produced. This is converted to sulphuric acid and is sold as a useful by-product. I am going to be given a sample of sulphuric acid, which is thought to have a concentration between 0.05 and 0.15-mol dm�. The purpose of this experiment is to find the accurate concentration of the sulphuric acid. I will do this by carrying out a titration between sulphuric acid and sodium carbonate solution. Therefore this is an acid-alkali titration (which is the determination of concentration by adding measured amounts of standard reagents to a known volume until the end point is reached). * Sulphuric acid is considered a strong acid, as it is completely in the form of ions in dilute solution. * Sodium carbonate is a weak alkali as it only partially forms ions in dilute solution. ...read more.

Middle

Keep the flow rapid till the colour changes to a lighter red, but before this turn the stopcock slightly horizontal as the acid comes out drop by drop. 12. Read off the value on the burette find out the volume of sulphuric acid needed to react with sodium carbonate. 13. Carry out the titrations Until you have recorded three results within 0.1cm� CONTROL VARIABLES Ensure the same sodium carbonate solution and sulphuric acid batch is used for all titration to ensure a fair test and the results will be accurate and reliable. Try to carry out the titrations on the same day to ensure there isn't a temperature change and that they are done in one uniform temperature. If the temperature is increased, the liquid will expand making the test inaccurate. RISK ASSESMENT * Wear safety goggles to prevent acid from entering the eye * Stools must be tucked underneath the table ensure bags are out of the way to prevent people from tripping * Long hair should be tied back * Ensure you are standing throughout the experiment so you are able to quickly move out of the way in case of spillages etc. ...read more.

Conclusion

It was important to keep a specific colour in mind, and stop the titration when the colour was reached. Fortunately I kept the colour change point constant, although this could have been a cause of any anomalies. To improve the investigation a pH metre can be used instead of using a pH indicator to see when neutralisation occurs. This would eliminate the most significant source of error, which is largely due to human error. I could have further improved the experiment by checking the pipette filler for air gaps. Also using a magnetic stirrer would have ensured all the sodium carbonate was completely dissolved. I could have used more accurate scale -analytical balance which measure to 0.0001g so it has a high degree of precision Percentage error I am going to work out the percentage error using the following equation: (True value- experimental value) � 100 True value Quantity measured Percentage error Mass of sodium carbonate using balance (0.05�100)/2.65=0.19% Volume of distilled water using volumetric flask (0.5�100)/250=0.2% Transferring sodium carbonate using pipette filler (0.5�100)/25=2% Carrying out titration using a burette (0.005�100)/28.43=0.02% (to 2.s.f) In order to minimise measurements errors larger quantities of all solution could be used although concentration would remain the same. For example 250 cm� graduated flask 0.2 � 100 = 0.08% 250 1 dm� flask 0.2 �100 = 0.02% 1000 Saher Ali 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Marked by a teacher

    Enthalpy of Neutralisation.

    3 star(s)

    Another 5m of NaoH was poured into the same calorimeter and 5m of NaoH was continuously added every 30 seconds until the 50cc of the chemical was emptied into the calorimeter cup. The same method was used for experiments 1 and 2 respectively, using the chemicals required for both experiments accordingly.

  2. In order to find out the exact concentration of sulphuric acid, I will have ...

    * If your skin comes in contact with any chemicals, quickly wash the infected area with water to prevent any further injury. * Be extremely careful while handling sulphuric acid, as it can cause severe damage if it comes into direct contact with eyes.

  1. Softening hard water with sodium carbonate (Na2CO3)

    Ca2+ from the water in these cases all the stearate ions were used up in forming the scum and there wasn't enough left to form a lather. That is why in the cases where a lather did not fully form, the scum was far more visible.

  2. Finding out how much acid there is in a solution.

    Na2CO3 (aq) + H2SO4 (aq) Na2SO4 (aq) + H2O (l) + CO2 (g) For the above reaction to take place properly, the molar mass for both Na2CO3 and H2SO4 should be equal. By looking at the equation we can see that this is true.

  1. Determine the concentration of sulphuric acid by acid-base titration.

    * White tile: used to make colour changes clearer. * Weighing bottle: to place the accurate amount anhydrous sodium carbonate. * 250cm3 beakers (2): used for mixing anhydrous sodium carbonate with distilled water. * Graduated volumetric flask: used to make up a solution of fixed volume very accurately * Electronic balance: used to weight the accurate amount anhydrous sodium carbonate.

  2. To find the accurate concentration of sulphuric acid, by making up a standard solution, ...

    g Weight of Bottle X g 7 Transfer the entire solid content into the volumetric flask. This is achieved by dissolving the solid, in distilled water in the beaker, stirring with a glass rod. N.B: The glass rod has been stirring the solid matter.

  1. The Use of Volumetric Flask, Burette and Pipette in Determining the Concentration of NaOH ...

    + NaOH(aq) --> NaCl(aq) + H2O(l) Since the HCl and NaOH dissociate into ions in solution, the ionic equation is: H+ + Cl- + Na+ + OH- --> Na+ + Cl- + H2O(l)

  2. Planning of Titration

    The solution should be delivered quickly until a couple of ml from the endpoint. * Prepare the solution to be analyzed by placing it in a clean or rinsed with distilled water conical flask. Add the indicator methyl orange to the sulphuric acid.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work