• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Find the refractive index of a plastic block.

Extracts from this document...


Name        Jonathan Tam                Class: 13A

Yew Chung International School                Physics

Aim:        Find the refractive index of a plastic block


I will use two methods to find the refractive index of plastic. The first one is to use the critical angle, and the other one is to use Snell’s Law.

Critical Angle method:


  1. Set up the apparatus as shown. Put a piece of white paper under the apparatus. Turn off lights from the surroundings.
  2. Put a black slid into the light box so that only a thin ray will be shone.
  3. Turn on the light box. Adjust the angle of incidence so that there are no refracted rays.
...read more.


image10.png to get refractive index of plastic.Repeat step 3 to 6 at least 7 times to get sufficient readings. Use a different angle of incidence each time.Compare the values obtained using the two methods.

Data Collection:

Critical angle method:

Critical Angle (± 0.5°)




Snell’s Law method:

Angle of Incidence (± 0.5°)

Angle of Refraction (± 0.5°)















...read more.


image03.png is 1.

















The refractive index of plastic using Snell’s Law is: 1.344 ± 0.06

Conclusion and Evaluation:

From the two experiments, the refractive index of plastic is coherent to be between 1.344 to 1.36.

There are many systematic errors in these experiments, which came from the apparatus itself. These include:

  • protractor
  • light box

The protractor has a very high uncertainty of ± 0.5°. This has generated a high percentage error in our results (from 0.6% up to 3.3%). When we take sin for both angles and add the two percentage errors (or uncertainties) together, it has generated a whole range of refractive indexes.

However these results are acceptable because they both fall within the range of uncertainties (i.e. no contradictions). Therefore these experiments, although carries a high percentage error, can still be considered as valid.

...read more.

This student written piece of work is one of many that can be found in our GCSE Waves section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Waves essays

  1. Marked by a teacher

    Find the critical angle and refractive index for plastic using a graphical treatment for ...

    4 star(s)

    (Snell's law). The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant for two given media. This constant is the refractive index (n). When referring to light, this is also known as the optical density and, as with

  2. Marked by a teacher

    Investigation:To find the refractive index of cooking oil.

    4 star(s)

    I therefore predict that the refractive index of cooking oil will be approximately 1.40. DEPENDENT VARIABLE (things to be kept the same) In order to make this investigation a fair test, several pointers must be followed throughout the experiment. These are: * The plastic tray, which is being used to

  1. The aim of my experiment is to see what factors affect electromagnetism the most ...

    previous test in the nails (or the nail, but that is unlikely as iron loses its charge quite quickly so it's most probably the paperclips retaining the charge). This must mean that the next test is affected in some way, which might affect the next set of results.

  2. Investigating the factors which affect the sideways displacement of a light ray through a ...

    =n (refractive index) Sin r (angle of refraction) Sin 60 = 1.52 (what I got from preliminary experiment) Sin r Sin r = Sin 60 = 0.57 1.52 r = Sin-1(0.57) = 34.75 6 =Cos. r AB 6 =Cos. 34.75 AB AB= 6 = 7.30 Cos.

  1. Find a relationship between the angles of incidence and the angles of refraction by ...

    Inferences: Limitations of apparatus and measuring equipment: * Thick beam coming out from perspex, making it difficult to mark an accurate point for the refractive angle.

  2. Carry out an experiment to find a relationship between the incident angle and the ...

    The graphs line of best fit goes diagonally across the centre of the graph. This is because the refracted angle is half of the incident angle. From my graph I am able to find the refracted angle of any angle of incidence. The results from my experiment support my prediction.

  1. Deviation of Light by a Prism.

    can work out the angle that R1 makes with it using 90 - R1.This gives: 90� - 25.2� = 64.8� (call this angle "a") I also know the angle at the top of the prism because this is always 60� for the type of prisms that we are using, so

  2. Refractrometry. Aim: Using a model Pulfrich refractometer determine the refractive index of a range ...

    For example I will be using black paper to make visibility of the disappearance easier to spot. I must ensure that I use a sharp pencil so that my measurements are precise. By using the pins and pin board system I can take time to check my measurements are correct before drawing in the lines.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work