• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23

Finding out how much acid there is in a solution.

Extracts from this document...

Introduction

Finding out how much acid there is in a solution. PLANNING During the extraction of a metal from its ore sulphur dioxide is often produced. This is converted to sulphuric (VI) acid and sold as a useful by product. The equation for this titration is: Na2CO3 (aq) + H2SO4 (aq) Na2SO4 (aq) + H2O (l) + CO2 (g) This experiment will be involving an acid and an alkaline. I will be mixing both of these together to find out the concentration of the acid in the solution. I am going to use the method of titration to find this out. Titration is the process of determining the volume of one reactant solution, which exactly reacts, with a given amount of another reactant. We are going to be finding out the concentration of sulphuric acid by adding it to a sodium carbonate solution. Once neutralisation has occurred, this will be the end of the titration. We are told that the concentration of sulphuric acid will be between 0.05mol dm-3and 0.15 mol dm-3 . We are going to use the method of titration to find out the exact concentration. We are also going to be using an indicator. There are many different indicators, which have different properties because the indicator changes colour at different pH numbers therefore the right one should be used which will suit the chemicals being used in the titration. The titration will involve a strong acid, which will be the sulphuric acid, and a weak alkaline - sodium carbonate. Different indicators change their colour according to the hydrogen ion concentration of the solution to which they are added. Indicators such as universal indicator do not show the pH change but the pH of a solution at a certain point. Therefore this would not be helpful for our titration. We will need an indicator that will change its colour quickly and react in different conditions. In acidic solutions hydrogen ions from the acid react with methyl orange to form a red compound. ...read more.

Middle

Conical flasks were used as they stopped the solution from spilling out during the swirling in the titration therefore obtained the correct volume throughout the titration. * The end point of a titration is when the two solutions have the same number of moles at that point. I am aiming to do at least seven titration's including a rough titration. Implementing I have now finished my titration, and have obtained a set of results, which is shown in the table below. I have also shown the different measurements that were taken for all the chemicals that were used for the titration. * Amount of Na2CO3 (s) used = 2.65 g * Amount of Na2CO3 (aq) used for each titration = 25cm3 * Concentration of the Na2CO3 (aq) used for each titration = 0.1 mol dm-3 * Temperature of surrounding = 20degrees. Below is a table showing the final results that I obtained from each titration. I achieved a good set of results as they all only had a difference of 0.1cm between them, which is very accurate. I also involved my rough titration in the table, which is not counted in the final calculations, as it was the only anomalous result that I had. The rough titration gave me a warning to when the neutralization occurs between the sulphuric acid and sodium carbonate solution, so that I would not add too much acid in my next titration. Number of Titration Amount of H2SO4 (aq) required in order to neutralise 25 cm3 of 0.1 mol dm-3 of Na2CO3 (aq) Initial Burette Reading 0 28.70 0 1 26.69 0 2 26.70 0 3 26.69 0 4 26.68 0 5 26.68 0 6 26.68 0 Average Titre (Not including the rough value) 26.68 0 Analysis Na2CO3 (aq) + H2SO4 (aq) Na2SO4 (aq) + H2O (l) + CO2 (g) By looking at the equation above, we can predict exactly what is going to happen in the reaction. ...read more.

Conclusion

Also when transferring the solution into the graduated flask and using a pipette filler to measure out 25cm3 of sodium carbonate, the high-tech equipment would make sure that the volume is correct and that the bottom of the meniscus touches the mark. It would also get rid of any air bubbles. * Another thing that could have affected this experiment is the impurities and dirt that could have been left behind in the equipment that were being used. This could have been because they were not rinsed out or cleaned properly. The use of high-tech equipment could have detected these impurities and gotten rid of them straight away so that conditions were perfect. * A large part of the titration, which could have been affected by human error, was when handling the sulphuric acid flow through the tap. As human hands controlled the acid flow, the flow was not controlled. More acid could have been added then needed, therefore making the result inaccurate. This could have been dealt with if high-tech equipment could have been used. This would have controlled the acid flow from the tap making the result accurate. Equipment also could have been used to detect the colour change in the conical flask at the precise time of neutralisation. This would have been more efficient as our eyes might not have been able to adjust to the colour change so quickly. Overall, I think that the results that I have obtained are very accurate and reliable as they tell me what I wanted to find out for this titration. If I wanted an even more accurate result I would use the techniques referred to in my evaluation. I would without a doubt use high-tech equipment as there was a lot of human error in my titration experiment. Also instead of a pH indicator I would have used a pH meter as it would have given me the exact value at which neutralisation occurs. ?? ?? ?? ?? Heena Patel Chemistry Coursework 2003 12C Miss Hyde 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Marked by a teacher

    Back Titration Lab Report. In my experiment, I hoped to find the amount of ...

    4 star(s)

    HCl + NaOH � NaCl + H2O Moles of acid in first reaction = Molarity x Average volume 1000 = 1 x (50 � 0.02 cm3) 1000 = 0.05 moles Moles of base used = Molarity x Average volume 1000 = 0.1 x (41.5 � 0.05 cm3)

  2. Marked by a teacher

    Enthalpy of Neutralisation.

    3 star(s)

    * Lab coat (preferably long sleeved) and closed toed shoes must be worn at all times to prevent chemicals from spilling on your clothes. Additional protective clothing should be worn if the possibility of skin contact is likely. * Safety goggles/glasses must be worn to prevent chemicals getting into your eyes.

  1. Determine the formula of hydrated Sodium Carbonate

    moles of H2O. The second method I will use to determine x, will involve a titration between hydrated sodium carbonate and hydrochloric acid. Na2CO3 + 2HCl --> 2NaCl + CO2 + H2O 0.1M Hydrochloric acid Hydrated Sodium Carbonate Phenolphthalein Indicator Distilled water Burette (50 cm3)

  2. How much Iron (II) in 100 grams of Spinach Oleracea?

    Mass to be weighed out = Molecular Mass x Moles wanted Molecular Mass = 158.03 Mass = 158.03 x 0.01 mol dm-3 Mass = 1.5803 g (per 1000 dm-3) 1.5803 g 4 = 0.395 g (per 250 dm-3) I now need to weigh out 0.395 grams to obtain a Potassium Manganate (VII)

  1. Finding the concentration of sodium carbonate.

    were 0.05 of the average. The anomalous result could be down to a number of reasons. Such as the conical flask not being rinsed properly, leaving a small amount of water in the bottom, diluting the solution further.

  2. Softening hard water with sodium carbonate (Na2CO3)

    or harder to form a lather with an equal volume of it. ==> Use a burette because they are more accurate a t dispensing liquids than a beaker or a measuring cylinder. ==> Do not allow any flames to come near the soap solution because it contains ethanol which is

  1. To carry out a titration between a strong acid and a weak alkali, to ...

    * Pipette filler and pipette (to transfer sodium carbonate solution to a conical flask) * 3 drops of Methyl orange (to show colour change-end point of titration) * White tile (to show colour change clearly for more accuracy so we can determine the exact point the titration ends.

  2. To find the percentage composition of citric acid in lemon squash. I will do ...

    A sample calculation is shown below using the first trial of lime titration- 11.87mL (Diluted) * 10 = 118.70mL (Undiluted) Note- The values for the lime and lemon juice in the data table were already multipied by ten so that an accurate comparison could be made.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work