• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Finding the percentage of Nickel in an unknown compound.

Extracts from this document...

Introduction

Finding the percentage of Nickel in an unknown compound. LAB 3 I. Purpose: Finding the percentage of Nickel in an unknown compound. II. Objectives: To separate and weigh nickel from a sample that contains an unknown amount of nickel and to use the mole method to determine the amount of nickel in the unknown sample. III. Background: Analytical chemistry can be simply divided into two areas. Qualitative analysis and quantitative analysis. The two words "qualitative", means to find out if a specific substance is present in a soil sample, and "quantitative" means to determine how much of that substance is in the sample. The analytical chemist has many tools at his disposal, for this quantitative experiment we will be performing a gravimetric analysis to find our how much nickel is in an unknown sample. Gravimetric analysis means to separate the nickel from the sample, and then weigh it. Your instructor will give you a test tube that contains approximately one gram of a compound that contains an unknown amount of nickel compound. You will dissolve a portion of this sample in water. ...read more.

Middle

Avoid direct contact with nickel compounds by using plastic gloves. VI. Experimental Procedures: 1. Find the mass of the unknown sample. Prepare your sample. Carefully weigh about 2.0 grams of your unknown nickel compound into a small beaker. Be precise. 2. Dissolve your sample in distilled water. Dissolve the sample in 20-30 mL of distilled water. You may need to heat your beaker slightly in order to dissolve the entire sample. Be careful not to spill any of your samples. 3. Use a clean beaker to get about 25 mL of DMG solution. 4. Add NH4OH and DMG. The nickel/DMG reaction proceeds more quickly and completely if you add a small amount of NH4OH (4-5 drops) to your dissolve nickel solution before you add the DMG. Bring your beaker of dissolved nickel to the lab fume hood and add the NH4OH. The NH4OH is very concentrated so do not spill any on yourself and do not inhale any vapors. 5. Bring the beaker containing the nickel solution and NH4OH back to your lab bench and carefully add the DMG solution a few drops at a time. ...read more.

Conclusion

Add DMG to the liquid in your vacuum flask to see if more NiDMG precipitates out. Re-filter if necessary. 8. Dry with acetone. By now you should have a wet mass of NiDMG sitting on your filter paper. In order to obtain an accurate mass measurement, you must completely dry the NiDMG. Acetone will remove water from the NiDMG, but will not dissolve the NiDMG. Acetone also evaporates very quickly. Turn the vacuum aspirator on and use an eye dropper to add about 25 mL of acetone to the NiDMG on your filter paper; then let the NiDMG dry for five to ten minutes with the aspirator on. The precipitate will turn light pink as it dries. 9. Determine the mass of the precipitate on your filter paper. Weigh your filter, funnel, and precipitate. Subtract the weight of the top of the funnel and filter, and you willl have the weight of the NiDMG you have recovered. 10. Repeat the entire experiment two more times to show that yur results are reproducible. Clean up. By the time you perform this experiment 3 times, you will have flasks and beakers encrusted with sticky, pink, solid NiDMG. Take time to completely clean your glassware and filtering apparatus before you leave the lab. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Classifying Materials section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Classifying Materials essays

  1. Marked by a teacher

    Identifying an Ionic Compound. Objectives: To learn and test for metal ions ...

    5 star(s)

    if I was testing for Na+, K+, Ca2+, Cu2+ using a nichrome wire with HCL over a Bunsen burner, then colored flames would be produced. To my amazement, many colored flames were produced and sodium had an orange flame, potassium a lilac flame, calcium a brick red flame and copper (II)

  2. Identification of an unknown compound.

    If the unknown chemical is either an aldehyde or a ketone, an orange/yellow precipitate will form. If a positive result occurs and an orange/yellow precipitate forms, proceed to test 3 (silver-mirror test), to distinguish between aldehydes and ketones. If no orange/yellow precipitate forms skip test 3 and continue to test 4.

  1. Ions - a qualitative analysis on our chemicals by flame testing.

    to the gas tap they pipe wouldn't hold on the gas tap. This problem could not be fixed so I decided the only way around was to switch the Bunsen burner. Once I had managed to overcome the first error as I proceeded with the experiment and encountered another error

  2. The role of mass customization and postponement in global logistics

    This was attributed to 'little knowledge of postponement benefits and associated costs, perceived technology limitations and ineffective organization alignment.' Implementing a postponement strategy involves fundamental changes to a company's manufacturing processes and internal operations. Configure-to-order production demands a high degree of collaboration and visibility across the supply chain.

  1. Organic Qualitative and Quantitative Analysis

    2,4-dinitrophenylhydrazine reagent, which was then sealed and shaken to accelerate the reaction. The observations were then noted down. iii. 2 ml of Lucas reagent were placed in a test tube; five drops of the unknown were then added. The test tube was shaken and the contents were allowed to react.

  2. To conjecture the structure and bonding of eight unknown solids by analysis of experimentally ...

    in the molten [because their ions become free-moving], and aqueous solution [due to ion-dipole bonding allowing the movement of charged particles] state), it is likely to have a network lattice. So A is: "an ionic substance with a rigid network lattice structure of an infinite array and strong bonds in three dimensions."

  1. An experiment to investigate the factors that determine the amount of energy released when ...

    I experimented with 1.02g of hexan-1-ol and 25cm3, 75 cm3, 100 cm3 and 150 cm3 and I used my results from my previous experiment for 50 cm3. I used a 100ml conical flask for 25cm3 and 75cm3 and a 200ml conical flask for 100cm3 and 150 cm3.

  2. Our experiment consisted of two samples of water containing unknown substances, and our objective ...

    Temporary hardness removal: Permanent hardness removal: In each case magnesium or calcium is precipitated and this removes the hardness of the water. Soft water doesn't contain as many minerals as hard water. Also, unlike hard water, soft water doesn't cause limescale to build up in appliances since it doesn't have calcium carbonate dissolved into it.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work