• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

GNVQ/Vocational Science - Reduction of Copper including methods of extracting metals (copper) in industry

Extracts from this document...

Introduction

Reduction of Copper Carbonate Introduction Malachite is a rock, Cu2(CO3)(OH)2, Copper Carbonate Hydroxide and it is found in Shaba, Congo; Tsumeb, Nambia; Ural mountains, Russia; Mexico; several sites in Australia; England and several localities in the Southwestern United States especially in Arizona, USA. Copper, Carbon, Hydrogen and Oxygen are the elements that make up malachite. The copper in Malachite can be extracted through a displacement reaction. A single-displacement reaction is where one element appears to move out of one compound and into another. This is usually written as: A + BX � AX + B This will occur if A is more reactive than B. (Malachite) Risk Assessment The open end of the boiling tube should be pointed away from any person so that anything that spits out it does not cause any harm. Wear goggles. The equipment is going to get very hot so you must be careful not to touch it until it cools. Method 1. Put 10 g of malachite powder into a large test tube and heat it gently until it turns black and stops rising in the test tube. 2. Allow the tube to cool. 3. Add 1 g of carbon powder and mix well. 4. Heat the mixture strongly until it turns red. 5. Let the mixture cool. ...read more.

Middle

The Industrial Process of Refining Copper Ore The raw ore first needs to be crushed into smaller pieces. The ore is crushed in to 25cm pieces and then using water and 13cm steel balls, the ore is ground up into 1cm pieces. The unwanted rock settles out using froth flotation, which concentrates the ore. Using a blast furnace, the copper ore is burnt with oxygen to produce matte, iron is removed as slag and sulphur comes off as sulphuric dioxide. The matte is placed into a converter furnace and air is blown through, which removes iron and sulphur to blister copper. Natural gas is blown into the anode furnace to burn off any remaining oxygen in the melt. The copper melt is cast into anodes where the anodes in the copper sulphate are refined to 99.99% pure, thus producing a 99.99% pure cathode. Industry uses much larger amounts of ore than in the lab. This improves the percentage yield as the more ore that is used, the more metal that can be extracted from it. Industry uses higher temperatures than in the lab, and also the heating process does not need to be repeated as it is as efficient as need be the first time round. ...read more.

Conclusion

Electrolysis is often a lot more expensive than extracting metal from an ore through the use of coke produced from cheap coal, as the electricity bill for the electrolysis of a metal is very high. Sometimes, more reactive metals such as aluminium cost more to extract than less reactive metals like iron. This being said, as copper is a lot less reactive than both carbon and iron it should be quite an expensive metal to extract Extracting Copper through Electrolysis: 1. After smelting, impure copper is poured into a block to form the positive anode. Previously purified copper is used to make the negative cathode. Both the anode and cathode are dipped into an electrolyte of copper sulphate solution. 2. An electrical current passes through the solution, causing electrolysis to happen - this, forming blue copper ions (Cu2+). 3. Now that we have gained positive ions, they become attracted to the negative cathode and react to form copper atoms. The mass of copper dissolving at the anode and the copper deposited on the cathode are equal - the concentration of the copper sulphate is constant. 4. Impurities found in the impure copper anode decline to the bottom of the copper electrolysis vessel, where it is poured off as waste, though sometimes can be valuable and contains other metals such as silver. ?? ?? ?? ?? Unit 3 Portfolio 1 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Changing Materials - The Earth and its Atmosphere section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Changing Materials - The Earth and its Atmosphere essays

  1. Investigating The Reactivity Of The Metals Iron, Magnesium, Zinc, Copper And Calcium And Their ...

    Atoms of these metals are reactive, but their ions are stable. Metals at the bottom of the reactivity are the opposite of those metals at the top. Ions of these metals want to gain electrons and form atoms so these metals are less reactive. (From chemistry counts by Graham Hill)

  2. Investigate the factors that affect the mass of Copper deposited on the Copper Cathode ...

    graph and experimental results graph both have similar positive correlations and my qualitative prediction supports my conclusions drawn. Calculations It is important when producing my results to explain how they were acquired, using different calculations. The mass of copper deposited on the cathode was calculated by subtracting the mass of

  1. What Effects the Reaction in the Electrolysis of Copper Sulphate.

    The quantity of the solution would have little affect on the experiment provided that the electrodes are completely covered to allow no effect on the flow of electrons. The distance between the electrons could be varied although this would probably only change the current and therefore the amount of coulombs.

  2. Extraction of Metals.

    * Limestone (to get rid of sandy impurities) * Hot air (is blasted into furnace to increase the temperatures and react with Carbon to make CO2) Coke (carbon) is burnt in hot air, producing CO2 and a lot of heat (needed for all the other reactions). C(s) + O2(g)

  1. Factors affecting mass of copper transferred in Electrolysis of aqueous copper sulphate

    Also by observing the colour throughout the experiment I saw that it didn't change. This was because as the copper ions became atoms at the negative electrode the same number of copper atoms became ions at the positive electrode

  2. Electrolysis of Copper Chloride

    The reason for the increase of copper concurrently with the concentration is due to the following principle. Increasing the concentration means increasing number of the molecules to be split and therefore more atoms (of copper) are produced. This is because the greater the molarity of the copper chloride solution the

  1. Investigation to show how the amount of electric current affects the amount of copper ...

    I also stated that as the electric current increases, the amount of copper being released from the copper anode would also increase because more electrons are being drawn from the anode and taken to the cathode so positive copper ions are attracted to the negative cathode and therefore leave the anode and go to the cathode.

  2. The Electrolysis Of Copper (ii) Sulphate Solution Using Copper Electrodes

    Some molecules become activated as they pass the activation energy. This results in an increase in the number of the activated molecules and an increase in their velocity. The frequency of effective collisions between the activated molecules therefore increases resulting in an increase in the rate of the reaction.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work