• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

Gravimetric Determination of Phosphorus in Plant Food

Extracts from this document...


Gravimetric Determination of Phosphorus in Plant Food Abstract: Gravimetric analysis can be used to determine the percentage of phosphorus in plant food. A precipitant of know composition is produced and weighed to find percent of phosphorus in compound. From the mass and known composition of the precipitate, the amount of the original ion can be determined. In doing so, percents of phosphorus and average percent phosphorus of sample plant food were determined. Introduction: Gravimetric analysis is a quantitative method of classical analysis. The element to be determined is isolated in a solid compound of known identity and definite composition. The mass of the element that was present in the original sample can be determined from the mass of this compound. Plant foods contain three essential nutrients that are not readily available from soils. These are soluble compounds of nitrogen, phosphorus, and potassium. A typical label on a plant food will have a set of numbers such as 15-30-15. These numbers mean that the plant food is guaranteed to contain at least 15% nitrogen, 30% phosphorus (expressed as P2O5) and 15 % potassium (expressed as K2O). The remaining of the product is fillers, dyes and other anions and cations to balance the charge in the chemical compounds. In this experiment, we will illustrate aquality control analysis for the determination of phosphorus in plant food by gravimetric analysis. Phosphorus will be determined by precipitation of the insoluble salt magnesium ammonium phosphate hexahydrate according to the reaction: 5H2O(l) ...read more.


Additionally, if there are too many OH- ions (i.e., the solution is too basic) they will precipitate with Mg2+ to form Mg(OH)2, and we don?t want that to happen either. If the solution is not basic enough, H2PO4- will be formed , and it will also not precipitate. You will slowly add ammonia until it just begins to become basic. Adding too fast or too much can lead to the coprecipitation of Mg(OH)2. Procedure: Weigh by difference to the nearest hundredth gram of the sample plant food. Transfer the sample quantitatively to a 250-mL beaker and record the sample mass. Add 35 - 40 mL of distilled water and stir mixture with a stirring rod to dissolve the sample. Although plant foods are advertised to be water soluble, it may contain small traces of insoluble residue. If the sample does not completely dissolve, remove the insoluble material by means of filtration. To the filtrate add about 45 mL of a 10% MgSO4?7H2O solution. Then add approximately 150 mL of 2 M NH3(aq) slowly while stirring. A white precipitate of MgNH4PO4?6H2O will soon form upon allowing mixture to sit at room temperature for 15 minutes to complete the precipitation. Next the precipitate must collect on a preweighed piece of filter paper[1]. Obtain a filter paper (three of these will be needed) and weigh it accurately. (Be certain that it is weighed after it has been folded and torn, not before.) ...read more.


Find the mean, the standard deviation, and the relative standard deviation. (b) Can any result be discarded ? (a) Mean = 22.50%, Standard Deviation = 0.26, Relative Standard Deviation = 1.16 (b) No 2. What is the percent phosphorus in MgKPO4 ? 6H2O? (1) (P) / (266.48) (100%) = 11.62% Thus: 11.62% P 3. MgNH4PO4?6H2O has a solubility of 0.023 g/100 mL in water. Suppose a 5.02-g sample were washed with 20 mL of water. What fraction of the MgNH4PO4?6H2O would be lost? (.023g) (.20) = .0046 (.0046 / 5.02g) (100) = .092% Thus: 0.092% 4. MgNH4PO4?6H2O loses H2O stepwise as it is heated. Between 40o and 60oC the monohydrate is formed, and above 100o the anhydrous material is formed. What are the phosphorus percentages of the monohydrates and of the anhydrous material? MgNH4PO4?H2O = 155.34 (30.973) (100) / 155.34 = 19.9 MgNH4PO4 = 137.32 (30.973) (100) / 137.32 = 22.6 Thus: Monohydrate = 19.9% P & Anhydrous = 22.6% P 5: Ignition of MgNH4PO4 ? 6H2O produces NH3, H2O, and magnesium pyrophosphate, Mg2P2O7. Complete and balance the equation for this reaction. If 2.50g of MgNH4PO4 ? 6H2O are ignited. how many grams of Mg2P2O7 would be formed? 1.13g Mg2P2O7 6: What is the percentage of P2O5 in Mg2P2O7? (141.94) / (222.56) (100) = 63.7% P2O5 Thus: 63.7% P2O5 7: Today sodium content in food is an important health concern. How many milligrams of sodium are present in one ounce of table salt (NaCl)? 11152mg ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Classifying Materials section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Classifying Materials essays

  1. Determine BaCl2.2 H2O -Gravimetric Analysis Lab

    - 26.64 � 0.01g (Mass of Crucible and Lid) = 1.74 � 0.02g (Mass of Barium Chloride after 3rd Heating) Mass of Water Removed from Barium Chloride on 1st Heating: 28.65 � 0.01g (Mass of Crucible and Lid and Barium Chloride Sample)

  2. The role of mass customization and postponement in global logistics

    i. Obtaining information from the customers is hard. There exists a gap in what the customer wants? What he communicates? And how he acts? Most of the time customers could no clearly articulate their requirements. They are easily taken away by what is available in a store shelf or a B-page.

  1. Organic Qualitative and Quantitative Analysis

    The observations and the time it took for the mixture to react were then noted down. iv. Since the test for the primary and the secondary alcohols is the same, only producing different results, it was performed only once.

  2. Rate of reaction of different concentrations of sodium thiosulphate.

    The best-fit curve demonstrates that all my results are very accurate and reliable as there are no anomalous points. The trend shows the stronger the concentration the quicker the time for the cross to be blocked; it also displays the massive drop from the first plot (8g/dm3)

  1. Our experiment consisted of two samples of water containing unknown substances, and our objective ...

    Apparatus * The two different samples of water * 2 large measuring cylinders * Evaporating basin * Scales for measuring mass * Bunsen burner * Heat-proof mat * Gauze * Tripod * Desiccator Method 1. Place the heat-proof mat on the table, a Bunsen burner in the centre, a tripod

  2. Enthalpy of Hydration Lab

    y= .0003x + 21.615 y final=31.07 ?T = 9.35 y = .0008x +31.64 yintial= 21.71 Q= -(9.35)(3.84 J g-1 C-1) (103.49 g) = -3715 J Moles = .0777 ?H2= These steps were taken to calculate the for all four of the trials and the average of the anhydrous as well

  1. should salt be banned?

    "It is Soil Association checked and offers full traceability." Avoid all salt - it's a toxic, irritating, corrosive, stimulating, enervating and potentially deadly poison. Yes, even Celtic and Himalayan salts are destructive to your body and health - don't be fooled by marketing hype! These inorganic substances may be trendy but they are not healthful.

  2. What "Carried the Trick"? Mass exploitation and the decline of thought in Ray Bradbury's ...

    `Once, books appealed to a few people, here, there, everywhere. They could afford to be different. The world was roomy. But then the world got full of eyes and elbows and mouths. Double, triple, quadruple population. Films and radios, magazines, books leveled down to a sort of pastepudding norm'" (54).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work