• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Gravity and the Simple Pendulum.

Extracts from this document...


Gravity and the Simple Pendulum Hypothesis: Since the period depends only on the length and on gravity, it is possible by measuring the period and the length of the pendulum to calculate 'g' (g is acceleration due to gravity). The length of the string needs to be measured very accurately to the centre of gravity of the mass to get the accurate value of 'g'. Method: Equipment used: String (7m) Mass (2x50g) Clamp Retort Stand Stop Watch Measuring Tape Protractor 1) The pendulum was hung from the top floor of the school down to the ground floor a few centimeters off the ground. 2) The length of the string was measured with the measuring tape. 3) We displaced the pendulum 5� from its equilibrium position. 4) The pendulum was given a push. 5) The stopwatch was started. 6) ...read more.


Controlled Variables: Uncontrolled Variables: Mass, length of string, Wind and stairwell. and the displacement. Results: Determining the Acceleration of Gravity Trial # String Length (m) Period (T) sec (10 back-and-forth swings) Experimental Value for 'g' (m/sec�) Accepted Value for 'g' (m/sec�) %Error 1 7 53.34 9.71 9.81 1 2 7 53.28 9.73 9.81 1 3 7 53.21 9.76 9.81 1 Average 7 53.28 9.73 9.81 1 As you can in the results table I included a category for percentage error. I included this category in my results' table so that I could find out how correct our value for 'g' is. Our value of 'g' was 1% incorrect. Discussion: In order to find an accurate value of 'g' we needed to change the equation T=2??l/g to g=4?�*l/T� then we substituted the length (m) ...read more.


Conclusion: Our results prove that our value of 'g' is 1% incorrect, this is quite accurate. Although during the experiment I think we did not measure the length of the pendulum correctly because we did not measure from the pivot point to the center of gravity. We also did not record the period properly because we recorded the period knowing that the pendulum kept hitting the stairwell, when the pendulum hit the stairwell it delayed the period. These two variables probably led us to the incorrect value of 'g'. As an improvement for next time we do this experiment we could measure the length of the pendulum by measuring from the pivot point to the centre of gravity. We could also make the length of the pendulum shorter so that we don't have as much trouble measuring the pendulum and try to do the experiment somewhere where the pendulum won't hit something. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Investigating the period of a simple pendulum and measuring acceleration due to gravity.

    Measuring the time period. 4. Take a total of 40 oscillations (20 the first time and 20 the second time) to ensure more accurate timing. 5. Make sure the string is fixed well in the other end. RISK ASSESSMENT: The Experiment I am going to do does not have

  2. The determination of the acceleration due to gravity at the surface of the earth, ...

    I did the same again, but changed the amplitude of displacement to 15�. I wanted to see how much difference there would be, so I could decide whether it was important to devise some sort of system to ensure the same amplitude of displacement each time.

  1. Determining the acceleration due to gravity by using simple pendulum.

    Measure the length (L) of the pendulum, from its point of attachment to the centre of the pendulum bob. 3) Pull the pendulum aside and release tit so that it starts swinging, using a stopwatch, begin timing at an extreme of the pendulums motion and time twenty full swings

  2. In this Coursework, we were given the task of investigating some factors which affect ...

    The stand was adjusted to hold a cork (see diagram above) which from it we suspended a bob from a length of string. Also attached to the cork, was a protractor, which was very carefully attached so it can be directly in line with the string.

  1. Determining the Acceleration Due to Gravity

    At its highest point (furthest away from equilibrium) it has no kinetic energy, but full potential energy. This potential energy is equal to the energy put into the system (the energy used to start the swing). At the equilibrium position all the energy is kinetic and so the mass is moving at the greatest velocity.

  2. An Experiment Using a Pendulum to Find the Acceleration due to Gravity.

    The length is included in the formula, it will be one of the things used in calculating the acceleration due to gravity, and therefore needs to be measured as accurately as possible. The fishing line idea due to its clean crisp nature will have less friction at its pivot than the meccano idea.

  1. Planning experimental procedures

    With the primary experiment we should constrain it simply by not adding any weights to the trolley and always using the same trolley to collect each result. � Gravity - the last portion of the formula for potential energy is gravity, which will affect the outcome if it is increased or decreased.

  2. Determining Gravity with a Pendulum

    Tie one end of the strong string onto the center of the pendulum and the other end of the string onto the pivot point (end of the whiteboard diagram hanger), while making sure that the actual length from the pivot point to the center of the pendulum is 90cm.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work