• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13

How does light intensity affect photosynthesis?

Extracts from this document...

Introduction

Introduction Photosynthesis is a very important process in nature. Photosynthesis is a biochemical reaction used to produce glucose using light energy, water and CO2 (Carbon Dioxide). A bye product of the reaction, photosynthesis, is Oxygen. It takes place in all green plants, which use the green chlorophyll, held in chloroplasts in the leaves, to trap light. The main site of photosynthesis is the palisade mesophyll cells in the leaf of a plant. It is these cells that contain the green chloroplasts and are very well adapted to do their task. They are near the upper side of the leaf where they can obtain the maximum amount of light, they are packed very closely together and as already mentioned contain green chloroplasts clustered towards the upper side too. Plants photosynthesise to produce food chemicals that are needed to allow them to grow. The main reaction is to produce oxygen and glucose to be changed into energy during respiration. Glucose is stored in the form of starch which is insoluble and does not affect the osmosis taking pace in the plant. As plants respire both day and night this starch is often used up during the night when photosynthesis cannot take place. The uses of glucose within the plant are for active transpiration, cell division, the production of protein and the production of cellulose. ...read more.

Middle

The optimum temperature for the enzymes to work is at roughly about 30-40 degrees, when enzymes are exposed to temperatures higher than this they are denatured and make the enzymes unable to perform at all. Variables in this experiment: The independent Variable is Light intensity. The dependant Variable is the rate of photosynthesis. To make sure this experiment is kept fair other variables are kept the same. Limiting Factors * Water. x * Light energy. x * Carbon Dioxide Concentration. x * Temperature (room temperature). V * Chlorophyll. V My experiments limiting factors will be Chlorophyll and Temperature. In my experiment water shall not be a limiting factor as the plant with be submerged in the water, this will not affect the plant in a bad way since the plant I am using is pond weed. Light energy will not be a limiting factor since it is our Independent variable. Carbon Dioxide will not be a limiting factor as I will put sodium bicarbonate into my water this will make a solution, which allows the water to make CO2 (carbon dioxide). Apparatus list * Beaker. * Flannel. * 1 metre ruler. * Elodea - also known as Canadian pond weed. * Pleistocene. * Stopwatch. * Lamp. * Sodium Bicarbonate. * Water. Method. * Set up apparatus. * Start up the lamp 100 cm away from plant in dark room. ...read more.

Conclusion

My results show me that 3 steps of results are in close arrangement and I would say that they are reliable. To make my results more reliable I could have recorded results for every 1cm as this would have been more reliable because it would have allowed me to make more accurate calculations of bubbles per minute of this experiment. Extension. I theorise that there are 3 primary light frequencies for white light (red blue green). I predicted that the chlorophyll absorbs the red and blue light and reflects the green light. Rate of Photo- synthesis R G B W No Frequency of Light Light Apparatus * Flannel. * 1 metre ruler. * Elodea - also known as Canadian pond weed. * Pleistocene. * Stopwatch. * Lamp. * Sodium Bicarbonate. * Water. * Syringe. * Beaker x2. * Different colour filters. Method. * Set up apparatus. * Start up the lamp 100 cm away from plant in dark room. * Switch lamp on. * Leave it in place for 2 minutes so it can adjust to the different light intensity. * Count number of bubbles produced by plant in one minute. * Record Results. * Move lamp forward 5cm. * Leave it for 2 minutes for plant to adjust to amount of light energy. * Count number of bubbles for 1 minute. * Repeat steps 4, 5, 6 and 7 until lamp is 5cm away from beaker. * Record 3 sets of results and repeat experiment with blue and red filters. Zaka Ahmad 11m 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. How does light intensity affect the rate of photosynthesis

    This experiment is difficult to evaluate as the problems need solutions, but the solutions cause problems in turn. Due to this inaccurate way of measuring the oxygen given off from the plant, there were a couple of anomalous results that did not follow the general trend.

  2. Experiment to Investigate the Effect of Temperature on the Rate of Photosynthesis in Elodea.

    Above the temperature of the maximum rate the structure of the enzyme molecule vibrates so energetically that some of the bonds holding the enzyme molecule in its precise shape begin to break, especially the hydrogen bonds. The enzyme molecule begins to lose its shape and activity and is said to be denatured.

  1. What is the effect on the rate of respiration of yeast cells with glucose ...

    Analysing Evidence and Drawing Conclusions Calculations Calculating the mean volume of carbon dioxide At each two-minute interval, the volume of carbon dioxide collected from all three experiments were added up and divided by three to give the mean. For example: The mean volume of gas collected at 2 minutes was:

  2. Investigate the factors, which affect photosynthesis.

    * No toxic chemicals to be handled directly. * Always do as instructed by a teacher * After each experiment benches must be tucked away. * Ethylated spirit is toxic and can cause blindness, therefore it is important to wear goggles.

  1. Investigating the effect of Light Intensity on Elodea.

    Light intensity was varied by altering the distance of the lamp from the plant. As the lamp is moved closer to the plant, the rate of photosynthesis increases. A greater light intensity means that more light energy is available so that the plant can use this energy to photosynthesise.

  2. Investigate the effect of light intensity on the rate of photosynthesis in an aquatic ...

    In the table of average results & not just distance as shown in the 2 tables prior to D the results table. Graph: Shows the effect of light intensity on the process of photosynthesis in an aquatic plant. From my ascending graph , I can see clearly that as the

  1. Investigating the abiotic factors that affect the size of Ivy leaves in shaded and ...

    Compress out as much solution as is possible without forcing the cap. Unscrew the cap and pour solution into 1 of the test tubes to make 1ml mark. Now add K2 test solution to the 1.5ml mark. Let the solution stand for 5 minutes before taking a reading.

  2. How temperature affects the rate of photosynthesis.

    But the most important limiting factor which alters the rate of reaction is the temperature. A high temperature increases the rate of reaction by providing the molecules with a higher amount of kinetic energy which results in more collisions with sufficient energy to break or make bonds.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work