• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13

How does light intensity affect photosynthesis?

Extracts from this document...

Introduction

Introduction Photosynthesis is a very important process in nature. Photosynthesis is a biochemical reaction used to produce glucose using light energy, water and CO2 (Carbon Dioxide). A bye product of the reaction, photosynthesis, is Oxygen. It takes place in all green plants, which use the green chlorophyll, held in chloroplasts in the leaves, to trap light. The main site of photosynthesis is the palisade mesophyll cells in the leaf of a plant. It is these cells that contain the green chloroplasts and are very well adapted to do their task. They are near the upper side of the leaf where they can obtain the maximum amount of light, they are packed very closely together and as already mentioned contain green chloroplasts clustered towards the upper side too. Plants photosynthesise to produce food chemicals that are needed to allow them to grow. The main reaction is to produce oxygen and glucose to be changed into energy during respiration. Glucose is stored in the form of starch which is insoluble and does not affect the osmosis taking pace in the plant. As plants respire both day and night this starch is often used up during the night when photosynthesis cannot take place. The uses of glucose within the plant are for active transpiration, cell division, the production of protein and the production of cellulose. ...read more.

Middle

The optimum temperature for the enzymes to work is at roughly about 30-40 degrees, when enzymes are exposed to temperatures higher than this they are denatured and make the enzymes unable to perform at all. Variables in this experiment: The independent Variable is Light intensity. The dependant Variable is the rate of photosynthesis. To make sure this experiment is kept fair other variables are kept the same. Limiting Factors * Water. x * Light energy. x * Carbon Dioxide Concentration. x * Temperature (room temperature). V * Chlorophyll. V My experiments limiting factors will be Chlorophyll and Temperature. In my experiment water shall not be a limiting factor as the plant with be submerged in the water, this will not affect the plant in a bad way since the plant I am using is pond weed. Light energy will not be a limiting factor since it is our Independent variable. Carbon Dioxide will not be a limiting factor as I will put sodium bicarbonate into my water this will make a solution, which allows the water to make CO2 (carbon dioxide). Apparatus list * Beaker. * Flannel. * 1 metre ruler. * Elodea - also known as Canadian pond weed. * Pleistocene. * Stopwatch. * Lamp. * Sodium Bicarbonate. * Water. Method. * Set up apparatus. * Start up the lamp 100 cm away from plant in dark room. ...read more.

Conclusion

My results show me that 3 steps of results are in close arrangement and I would say that they are reliable. To make my results more reliable I could have recorded results for every 1cm as this would have been more reliable because it would have allowed me to make more accurate calculations of bubbles per minute of this experiment. Extension. I theorise that there are 3 primary light frequencies for white light (red blue green). I predicted that the chlorophyll absorbs the red and blue light and reflects the green light. Rate of Photo- synthesis R G B W No Frequency of Light Light Apparatus * Flannel. * 1 metre ruler. * Elodea - also known as Canadian pond weed. * Pleistocene. * Stopwatch. * Lamp. * Sodium Bicarbonate. * Water. * Syringe. * Beaker x2. * Different colour filters. Method. * Set up apparatus. * Start up the lamp 100 cm away from plant in dark room. * Switch lamp on. * Leave it in place for 2 minutes so it can adjust to the different light intensity. * Count number of bubbles produced by plant in one minute. * Record Results. * Move lamp forward 5cm. * Leave it for 2 minutes for plant to adjust to amount of light energy. * Count number of bubbles for 1 minute. * Repeat steps 4, 5, 6 and 7 until lamp is 5cm away from beaker. * Record 3 sets of results and repeat experiment with blue and red filters. Zaka Ahmad 11m 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. What is the effect on the rate of respiration of yeast cells with glucose ...

    Subsequent to this stage there should be a continuous decrease in the mass of the potato chips. My results almost strictly follow this pattern. This leads me to believe that the degree to which measurements and observations made approached a 'true' value was of a high extent.

  2. Investigating the effect of Light Intensity on Elodea.

    The larger the surface area, the larger the bubbles, and the faster they would have come out. The plant was cut to the same length, but it was difficult to ensure that the tips were all cut at the same angle.

  1. Experiment to Investigate the Effect of Temperature on the Rate of Photosynthesis in Elodea.

    Other factors involved in enzyme controlled reactions are inhibitors and activators, but neither occur in this reaction so the explanation of these factors is unnecessary. The reason the graph started to curve downwards fairly rapidly after the temperature at which maximum rate occurred is due to the denaturing of enzymes.

  2. Investigating the effect of temperature on the rate of photosynthesis

    Reliability: During my experiment, we did 2 repeats for each temperature. For the temperature of 0oC, the maximum difference between the three results for rate of oxygen produced per minute is 0.4mm3/min. This is a small difference, therefore the set of results for 0 degrees is very accurate.

  1. How does light intensity affect the rate of photosynthesis

    shows that as light intensity increases around a plant, the rate of photosynthesis that occurs in that plant increases. This happened because less light rays reached the surface of the plant as it got further away and so less light (particles or waves)

  2. How temperature affects the rate of photosynthesis.

    So, at approximately 38 oC the highest amount of oxygen would be released i.e. the largest length of air bubble would be measured as the rate of photosynthesis would be highest at this or around this temperature owing to the high amount of kinetic energy and increase in number of collisions between enzyme and substrate molecules.

  1. The investigation is aiming to look at transpiration.

    Overall my techniques and methods used are reliable. there were only a few errors that might have caused inaccuracy of my results, and this contributed to my anomalous results: From table {1} I recognised two anomalous results. The first one was when I cut off all the leaves, I expected the rate of transpiration to be decreased because

  2. Investigating the abiotic factors that affect the size of Ivy leaves in shaded and ...

    Place the test tube on the square printed over the black shaded rectangles first and move it down the chart until one of the boxes is just visible. Phosphorus Test * Preparing filter device Unscrew the cap on the filtering device and remove plunger.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work