• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13

How does light intensity affect photosynthesis?

Extracts from this document...

Introduction

Introduction Photosynthesis is a very important process in nature. Photosynthesis is a biochemical reaction used to produce glucose using light energy, water and CO2 (Carbon Dioxide). A bye product of the reaction, photosynthesis, is Oxygen. It takes place in all green plants, which use the green chlorophyll, held in chloroplasts in the leaves, to trap light. The main site of photosynthesis is the palisade mesophyll cells in the leaf of a plant. It is these cells that contain the green chloroplasts and are very well adapted to do their task. They are near the upper side of the leaf where they can obtain the maximum amount of light, they are packed very closely together and as already mentioned contain green chloroplasts clustered towards the upper side too. Plants photosynthesise to produce food chemicals that are needed to allow them to grow. The main reaction is to produce oxygen and glucose to be changed into energy during respiration. Glucose is stored in the form of starch which is insoluble and does not affect the osmosis taking pace in the plant. As plants respire both day and night this starch is often used up during the night when photosynthesis cannot take place. The uses of glucose within the plant are for active transpiration, cell division, the production of protein and the production of cellulose. ...read more.

Middle

The optimum temperature for the enzymes to work is at roughly about 30-40 degrees, when enzymes are exposed to temperatures higher than this they are denatured and make the enzymes unable to perform at all. Variables in this experiment: The independent Variable is Light intensity. The dependant Variable is the rate of photosynthesis. To make sure this experiment is kept fair other variables are kept the same. Limiting Factors * Water. x * Light energy. x * Carbon Dioxide Concentration. x * Temperature (room temperature). V * Chlorophyll. V My experiments limiting factors will be Chlorophyll and Temperature. In my experiment water shall not be a limiting factor as the plant with be submerged in the water, this will not affect the plant in a bad way since the plant I am using is pond weed. Light energy will not be a limiting factor since it is our Independent variable. Carbon Dioxide will not be a limiting factor as I will put sodium bicarbonate into my water this will make a solution, which allows the water to make CO2 (carbon dioxide). Apparatus list * Beaker. * Flannel. * 1 metre ruler. * Elodea - also known as Canadian pond weed. * Pleistocene. * Stopwatch. * Lamp. * Sodium Bicarbonate. * Water. Method. * Set up apparatus. * Start up the lamp 100 cm away from plant in dark room. ...read more.

Conclusion

My results show me that 3 steps of results are in close arrangement and I would say that they are reliable. To make my results more reliable I could have recorded results for every 1cm as this would have been more reliable because it would have allowed me to make more accurate calculations of bubbles per minute of this experiment. Extension. I theorise that there are 3 primary light frequencies for white light (red blue green). I predicted that the chlorophyll absorbs the red and blue light and reflects the green light. Rate of Photo- synthesis R G B W No Frequency of Light Light Apparatus * Flannel. * 1 metre ruler. * Elodea - also known as Canadian pond weed. * Pleistocene. * Stopwatch. * Lamp. * Sodium Bicarbonate. * Water. * Syringe. * Beaker x2. * Different colour filters. Method. * Set up apparatus. * Start up the lamp 100 cm away from plant in dark room. * Switch lamp on. * Leave it in place for 2 minutes so it can adjust to the different light intensity. * Count number of bubbles produced by plant in one minute. * Record Results. * Move lamp forward 5cm. * Leave it for 2 minutes for plant to adjust to amount of light energy. * Count number of bubbles for 1 minute. * Repeat steps 4, 5, 6 and 7 until lamp is 5cm away from beaker. * Record 3 sets of results and repeat experiment with blue and red filters. Zaka Ahmad 11m 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. How does light intensity affect the rate of photosynthesis

    29/4/01 affect the rate of photosynthesis supply so that however much light the plant has it cannot photosynthesise due to the lack of another factor. I can conclude that oxygen was made because photosynthesis would have taken place in the plant as all the factors needed were available to the

  2. Experiment to Investigate the Effect of Temperature on the Rate of Photosynthesis in Elodea.

    GP is then reduced to triose phosphate in the presence of ATP and reduced NADP. ATP and reduced NADP are produced in the light dependant reaction. In high temperatures, to keep up with the high demand of ATP and reduced NADP, the light dependant reaction needs to take place quickly, relying on a lot of light.

  1. How temperature affects the rate of photosynthesis.

    have to acclimatise to a new environment while the experiment is being conducted. Thermometer 1 To measure the temperature of the water being used in the experiment and to make sure it is accurate. The thermometer being used will be accurate to 1 oC.

  2. Investigating the effect of temperature on the rate of photosynthesis

    Graph 2 begins to decrease from 43oC to 75oC where the average rate of oxygen released goes from 41.2mm3/min to 0.4mm3/min. This is because as temperature increases above optimum temperature, more bonds break, and the 3D shape changes further, making it less likely for the enzyme and substrate to bind, as the lock and key theory will no longer work.

  1. The investigation is aiming to look at transpiration.

    it corresponds with my initial prediction: the rate of water loss in mesophyte will be greater than that in the xerophyte plant. the main reason for transpiration stream is photosynthesis. The rate of transpiration in neophytes is higher than that in xerophyte.

  2. The aim of my investigation was to determine how limiting factors would affect the ...

    Phloem: The main components of phloem are to sieve elements and companion cells. Sieve elements are so-named because their end walls are perforated. This allows cytoplasmic connections between vertically-stacked cells. The result is a sieve tube that conducts the products of photosynthesis - sugars and amino acids - from the place where they are manufactured (source)

  1. Investigating the abiotic factors that affect the size of Ivy leaves in shaded and ...

    Meter Ruler - used to measure distance from ground. 4. Light probe/light metre - measure light intensity in both areas. 5. Soil temperature probe - measure soil temperature. 6. Air temperature probe - measure air temperature. 7. Clipboard - placed on the ground when measuring light intensity to give a uniform surface.

  2. whether or not the intensity of light would affect the rate of photosynthesis

    This can easily be controlled, simply by using the same lamp throughout the experiment. Carbon dioxide concentration - This can affect the rate of photosynthesis, since if there is too little CO2, it can become the limiting factor, thus impeding the viability of the experiment.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work