• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

How does light intensity affect the rate of photosynthesis of Canadian Pondweed?

Extracts from this document...

Introduction

Step - By - Step Plan Firstly I will get all my equipment out and place it on my working place. Secondly I will turn out all the lights and pull down all the blinds (if there are any) so that I will be able to get maximum light intensity from my lamp to the pondweed and keep it a fair test as my pondweed is only getting the light from the lamp and from no where else. Then I will measure 10cm of pondweed and place it into my glass beaker and place my glass funnel over the pondweed as you can see in the following diagram: Next I will fill my glass beaker with water up to about half way then add my hydrogencarbonate indicator (to keep the amount of CO2 the same each time), after I have done that I will fill the glass beaker to the top with water, next I will get my straw and place it in the beaker filled with water and blow until it goes a yellow colour, this is about a blow for 5 seconds. After that I will get my test tube and fill it to its peak with water and put my thumb over it making sure I don't spill in water, I will carefully put it over the top of the funnel without losing any water (it is essential that you don't lose any water because if you do, each time you carry out the experiment there will be different amounts of water and it will not be a fair test) ...read more.

Middle

Prediction I predict that the closer the lamp is to pondweed the faster photosynthesis will take place because light is needed for the reaction and there will be more input energy. The rate of photosynthesis to the light intensity is inversely proportional so it will increase rapidly at first but will not increases so rapidly when the lamp gets closer to the pondweed. When the lamp gets close to the pondweed the lamp will be giving all the light (energy) that the pondweed will need to photosynthesise at its optimum speed. It cannot photosynthesise any faster because there is only a certain number of chloroplasts containing a limiting amount of chlorophyll and this can only absorb a certain amount of light which is called the light saturation point but if the light intensity is to high then it could bleach the chlorophyll and delay photosynthesis. The other limiting factors should be at their optimum or remain constant throughout the experiment and so should not affect the experiment. So overall I think that the most oxygen bubbles given off will be when the lamp is 10cm away from the pondweed because it is not to close and therefore wont bleach the chlorophyll and delay the rate of photosynthesis, I think it is the ideal distance. When the lamp is 20cm and 30cm away from the pondweed they will be relatively similar results and a difference of approximately 20 air bubbles. It will give off the least oxygen bubbles when the lamp is 40cm away from the pondweed because the further the lamp gets away from the pondweed the harder it is for the chlorophyll to absorb the light so it will take longer to photosynthesise. ...read more.

Conclusion

My line of best fit did not suit some of my results because I had anomalous results as a result of this. I may have had anomalous results because some of the factors were limiting by the time. Something or a factor was limiting. I would suggest that it was the temperature because it could have got too low and slowed the rate of photosynthesis or maybe the concentration of the carbon dioxide would explain the amount of anomalous results. The evidence is just about sufficient enough to support a firm conclusion because about half of the results are nearly accurate, although some are anomalous when drawing a line of best fit. Some results that were plotted are in one place and some scatter off on the graph which prove that they are anomalous and something was not accurate during the experiment such as a factor that was limiting. Evidence is sufficient as a clear pattern is discovered that this is because the rate of photosynthesis slows down and ultimately this supports this firm conclusion. The improvements I would make for further work is to allow my results to be even more accurate and fair and much more reliable, but trying to avoid anomalous results when obtaining evidence and analysing evidence. I would like to provide additional evidence for the conclusion by extending the results and making more justifications and using scientific knowledge for more key factors that could be tested which I would like to investigate and test on with this similar method. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Marked by a teacher

    An investigation into the effect of light intensity on the rate of photosynthesis of ...

    5 star(s)

    Light wavelength (colour) - light energy is absorbed by the pigment, chlorophyll, in the leaf. Chlorophyll easily absorbs some colour of light, such as blue and red. However it does not easily absorb green or yellow light, rather it reflects them, decreasing the amount of light absorbed, and therefore the rate of photosynthesis.

  2. How does light intensity affect the rate of photosynthesis

    List of Apparatus: * Beaker * Measuring cylinder * Spatula * Stopwatch * Lamp * Clamp Stand and clamp * Filter funnel * 2x Syringe * Delivery tube * Piece of Canadian Pondweed * Ruler * Power source (mains i.e.

  1. How temperature affects the rate of photosynthesis.

    average rate of oxygen production and therefore so does the rate of photosynthesis. But a closer look at the graph shows a difference in the increases between 0 oC and 15 oC, 15 oC and 35 oC and 25 oC and 35 oC.

  2. Free essay

    Investigating the rate of photosynthesis of Canadian Pondweed

    I predict that as I increase the distance away from the lamp I will have less oxygen bubbles to count so as I decrease the distance from the lamp I will have more oxygen bubbles to count. Method: I am going to collect my equipment and I am going to

  1. whether or not the intensity of light would affect the rate of photosynthesis

    graph, and also points at either end of my results at which it is clear to see light intensity has little or no effect. Here, it was in fact at a light intensity of around 950 when it seems that another factor such as temperature or carbon dioxide concentration has become a limiting factor.

  2. Test the prediction that the closer the lamp is to a piece of pondweed ...

    This can easily be controlled, simply by using the same lamp throughout the experiment. Rate Increasing CO2 Increasing Light Carbon dioxide concentration - This can affect the rate of photosynthesis, since if there is too little CO2, it can become the limiting factor, thus impeding the viability of the experiment.

  1. Factors That Affect Photosynthesis.

    Light intensity is inversely proportional to the distance squared because the light energy spreads out as it travels further and further from its source. Light energy travels along the circumference of an expanding circle. When light energy is released from a point, the energy is dispersed equally along the circumference.

  2. Investigate a factor which may affect the rate of photosynthesis of Canadian pondweed.

    This will mean that the only variable in this experiment will be the light intensity, so making my experiment as accurate and fair as possible. Apparatus: * beaker * small syringe (capacity about 5ml) * glass funnel * plant irradiator * cut length of elodea, or Canadian pondweed * sodium

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work