• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

How does the resistance of Nichrome wire change as its length changes?

Extracts from this document...

Introduction

image00.png

Aim: How does the resistance of Nichrome wire change as its length changes?

Plan: image11.pngimage09.pngimage10.pngimage07.pngimage08.pngimage02.pngimage05.pngimage06.pngimage03.pngimage04.pngimage01.png

First we connected the equipment as shown in the diagram above. The equipment that we will be using is as follows:

Lengths of Nichrome wire: To pass the current through.

Power Pack: To send the voltage through the Nichrome wire.

Crocodile clips: To hold onto the Nichrome wire during the experiment.

Voltmeter: To measure the voltage.

Ammeter: To measure the current.

Connecting wires: To connect the wire.

Ice Pack: To keep the Nichrome wire cool during the experiment.

Stop clock: To measure the time period.

I have chosen to use Nichrome wire because from my preliminary results I found that this wire had the highest resistance, as copper burned up on the lowest voltage possible on the power pack and also in my preliminary test I found that the Nichrome wire would burn up you placed it up higher than 4 volts. This was the reason why we placed an ice pack on the wire to keep it at a low temperature; another reason is that we know that if the temperature is too high then the resistance also becomes higher.

...read more.

Middle

Results

After collecting the two sets of results I placed them into tables.

The tables are shown on the opposite page.

The first table is only of the results received from the experiment, while the second table is of the same first table except with the resistance added to it.

Length of wire (in cm)

Voltage

Current

10

0.9

1.75

20

1.04

1.16

30

1.13

0.78

40

1.17

0.64

50

1.21

0.53

60

1.24

0.45

Resistance table:

Length of wire (in cm)

Voltage

Current

Resistance

10

0.9

1.75

0.5142857

20

1.04

1.16

0.8965517

30

1.13

0.78

1.4487179

40

1.17

0.64

1.828125

50

1.21

0.53

2.2830189

60

1.24

0.45

2.7555556

Resistance Graph:

image12.png

These tables

...read more.

Conclusion


As well as making these modifications I would also improve my Investigation by testing the same wire but different widths of that wire. I would do this to expand on my Investigation.

From the graph on the previous page I can see that the resistance of the wire is proportional to the length of the wire. I know this because the Line of Best Fit is a straight line showing that if the length of the wire is increased then the resistance of the wire will also increase.

Conclusion

In my prediction I said that:
If the length increases than the resistance will also increase in proportion to the length.
From my graph I have shown that my prediction was correct, as the Line of Best Fit is a straight line proving that the resistance of the wire is proportional to the length of the wire.
The length of the wire affects the resistance of the wire because the number of atoms in the wire increases or decreases as the length of the wire increases or decreases in proportion.

By Scharlie Tamar Anthea Robinson

Candidate Number: 8122

14343

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Investigate how the resistance of a wire changes.

    if we use a thick wire and a thin wire for the voltage then we would get different results. It would not be directly proportional (length and resistance). * Cut the wire carefully, get the exact length. (cannot be even 1mm longer)

  2. Investigating how the resistance of Nichrome wire depends on its length

    Original prediction: I expect to see an increase in resistance with an increase in voltage as I increase the length of the wire, and similarly a decrease in resistance with a decrease in voltage as the length of wire decreases.

  1. Does Increasing the Length of a Nichrome Wire affect its Resistance

    V - Volts (Voltage) Resistance (Ohms) 1 0.56 2.11 3.76 2 0.48 1.84 3.83 3 0.45 1.76 3.91 4 0.41 1.65 4.02 5 0.40 1.57 3.92 2nd Time Position Number on VR I - Amps (Current) V - Volts (Voltage)

  2. Resistance of a Wire Investigation

    smaller chance for human error when counting within a smaller time frame. If the capillary tube option was to be chosen, volume should be measured for a smaller time frame to reduce the overall time to complete the experiment. In addition, during high rates of photosynthesis, it would still be

  1. An experiment to find the resistivity of nichrome

    0.49 5.51 From these results I have chosen to use thin constantin for the wire I am going to use in my main experiment. I have chosen this wire as it has the highest resistance and so it will be easier to notice any difference in resistance in my main

  2. How does length and width affect resistance

    I have decided to investigate how the diameter and length of a wire affects its resistance because other factors such as temperature are hard to control or vary. There is not a large enough range of materials to investigate how materials affect the resistance of a wire.

  1. The aim of this experiment is to investigate how a change in the length ...

    area of the wire - a thicker wire will mean there is less resistance, because there are a greater number of paths for the same quantity of electrons to flow, decreasing the likelihood of a collision, and so decreasing resistance.

  2. Investigate how the electrical resistance of a wire changes in relationship to it's length.

    should be half the number of collisions between the electrons and the atoms. If the wire is twice as long, there should be twice the number of atoms, resulting in twice as many collisions and a predicted doubling of the resistance.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work