• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

How does the weight of a pendulum effect its oscillation time.

Extracts from this document...

Introduction

Liam Kelly

How does the weight of a pendulum effect its oscillation time

Plan

The key factors that could affect this experiment are that the length of pendulum varying will change how far it has to swing to complete an oscillation.

The weight of the pendulum will have a effect on the oscillation time because the pendulum will have more weights which will increase the surface area for air resistance to take place this is the only possible way the weight of the pendulum will affect the oscillation time because, gravity is a standard force, so the weight will not effect the amount of gravity taking place.

The angle at which it is dropped at is another key factor because, if it is dropped from higher up it has longer to pick up speed so therefore it shall travel higher up giving it a longer oscillation time. If the pendulum is dropped from a lower then it shall have less time to pick up speed and so will not travel as high up on the other side.

...read more.

Middle

8.50

8.53

300g

8.87                      

8.94

8.84

400g

8.91                      

8.88

8.59

500g

8.72                      

8.91

8.34

600g

9.41                      

9.50

9.47

700g

9.44                      

9.41

9.44

800g

9.43                      

9.44

9.59

900g

9.60                      

9.51

9.38

1000g

9.37                      

9.41

9.46

Weight Of Pendulum

Average length of time

...read more.

Conclusion

We could have improved our test by having a beam and when it is broke by the pendulum the fifth time the pendulum breaks the beam it could stop timing so it would be the same reaction time for all, we could have had a stand or something to hold the pendulum in place before it is dropped that way we could be sure it was from the same spot each time.

In our experiment there was some slightly out of place results in our experiment but they’re no severe ones that could be anomalous results.

 We could have investigated a further 1000g so we went to 2000g to see if after every 500g there was a jump in time of nearly a second our so, like there was in our experiment. We could also continue to the point of were we have added so much weight that it could not complete 5 oscillations to the same height as it started. We could also have tried the experiment at different temperatures to see what effect, if any it had on the oscillation times.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Investigation into the range of a ski jump

    This is because the ball is travelling at higher speeds (because it is being dropped from greater heights), with more air resistance acting upon it due to the higher speeds, causing it to cover less distance. Air resistance cannot be removed unless working in a vacuum, but in future experiments

  2. Investigation into the effect of temperature on viscosity

    As such a straight line was produced which allows a gradient to be calculated. Graph 4 now gives us a straight line, we can therefore apply the straight line graph rule, y=mx+c Log10 F = mT+c The only problem is that c is an infinite viscosity at 0K.

  1. The effect of the temperature on the viscosity of the syrup.

    Once the sphere has reached the end, separate it from the syrup. To do this, hold the magnet by the side of the measuring cylinder so that the sphere becomes attracted to it. Once it becomes attracted, drag the magnet upwards so that the sphere will come up with it as well.

  2. Period of Oscillation of a Simple Pendulum

    As speed increases, so does the amount of air resistance. For example if one swims, it is difficult to go very fast as there is increased resistance upon that person as they go faster, so much more energy has to be exerted to travel at the higher speed.

  1. Damped Oscillation.

    The two variables I would use are x (displacement) and t (time). The acceleration is . Because I assume this motion is SHM, the acceleration is proportional to the displacement which is between the pendulum bob and the centre. Then the equation =kx is coming out.

  2. My aim is to find out what variables affect the time it takes for ...

    See diagram 3. I will stop the timer when it goes through the centre point and will do this on every mini experiment to make it all as fair as possible. When I am testing on the mass of the bob, I am always going to release the pendulum from the same angle of displacement.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work