• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

How does the weight of a pendulum effect its oscillation time.

Extracts from this document...


How does the weight of a pendulum effect its oscillation time Plan The key factors that could affect this experiment are that the length of pendulum varying will change how far it has to swing to complete an oscillation. The weight of the pendulum will have a effect on the oscillation time because the pendulum will have more weights which will increase the surface area for air resistance to take place this is the only possible way the weight of the pendulum will affect the oscillation time because, gravity is a standard force, so the weight will not effect the amount of gravity taking place. The angle at which it is dropped at is another key factor because, if it is dropped from higher up it has longer to pick up speed so therefore it shall travel higher up giving it a longer oscillation time. If the pendulum is dropped from a lower then it shall have less time to pick up speed and so will not travel as high up on the other side. ...read more.


We shall release the pendulum rather than push it because; it is easier to make the pendulum start with the same amount of force throughout the experiment. Results Weight Of Pendulum Length of time for 5 oscillations (secs) 100g 8.25 8.06 8.19 200g 8.35 8.50 8.53 300g 8.87 8.94 8.84 400g 8.91 8.88 8.59 500g 8.72 8.91 8.34 600g 9.41 9.50 9.47 700g 9.44 9.41 9.44 800g 9.43 9.44 9.59 900g 9.60 9.51 9.38 1000g 9.37 9.41 9.46 Weight Of Pendulum Average length of time for 5 oscillations (secs) 100g 8.2 200g 8.5 300g 8.9 400g 8.8 500g 8.7 600g 9.5 700g 9.4 800g 9.5 900g 9.5 1000g 9.4 Analysis My results show that an increase in weight on the pendulum the longer it takes for the pendulum to complete 5 oscillations, and my line of best fit on my graph shows a gradually increase from 8 seconds to complete 5 oscillation to 9.5 seconds to complete 5 oscillations. The reason they are close is because gravity is a standard force and is not affected by surface area or weight. ...read more.


We could have improved our test by having a beam and when it is broke by the pendulum the fifth time the pendulum breaks the beam it could stop timing so it would be the same reaction time for all, we could have had a stand or something to hold the pendulum in place before it is dropped that way we could be sure it was from the same spot each time. In our experiment there was some slightly out of place results in our experiment but they're no severe ones that could be anomalous results. We could have investigated a further 1000g so we went to 2000g to see if after every 500g there was a jump in time of nearly a second our so, like there was in our experiment. We could also continue to the point of were we have added so much weight that it could not complete 5 oscillations to the same height as it started. We could also have tried the experiment at different temperatures to see what effect, if any it had on the oscillation times. Liam Kelly ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Period of Oscillation of a Simple Pendulum

    By totalling together the differences between the theoretical answer and my answer, I can see how incorrect the results are as an average. On average, the results are out by -0.0675 seconds. This is only a small amount of time, however, if I had my answers exactly the same as the theoretical answers, then the total would equal zero.

  2. The effect of the temperature on the viscosity of the syrup.

    Although this prevents the loss of syrup from the measuring cylinder, a small amount of syrup is still lost as the syrup becomes attached to the sphere whilst being removed. To improve this experiment further, the scale should be constantly monitored and further syrup should be added to maintain a constant level of syrup.

  1. Damped Oscillation.

    This is a second order differential equation. Following is the steps I have taken to solve this second order differential equation. Aux. equation Case 1: General solution It can be written as It is an overdamping. Case 2: General solution It is a critical damping.

  2. Investigation into the range of a ski jump

    The low power microscope allows the scientist to distinguish to an accuracy of ±0.1mm, but the ruler markings are only accurate themselves to ±1mm. This means that a compound error is formed and shows why appropriate measuring methods should be used in conjunction with measuring equipment.

  1. Investigation into the effect of temperature on viscosity

    must remain constant so that a selection of data can be compared. Each ball bearing has a different surface texture, some are dull in colour and slightly rough while others are shiny and smooth, this could have an effect on the amount of friction and hence the speed of the ball.

  2. My aim is to find out what variables affect the time it takes for ...

    See diagram 3. I will stop the timer when it goes through the centre point and will do this on every mini experiment to make it all as fair as possible. When I am testing on the mass of the bob, I am always going to release the pendulum from the same angle of displacement.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work