• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

How the height of a ramp affects the speed of a toy car.

Extracts from this document...


Physics investigation.Laura Boyes 11D1.

How the height of a ramp affects the speed of a toy car.

Background knowledge.

Speed is a way of describing how fast an object is moving and can be calculated if you know the distance the object travels and how long it takes to travel that distance. You can then calculate the speed of an object using the formula:


                              TIME TAKEN (S)

The formula triangle for this is;

Speed is measured in metres per second (m/s), kilometres per hour (km/h) or miles per hour (mph).

There are certain factors, which affect the stopping distance of a car such as gravity and the surface area, which it travels on. If the gravity is decreased this would affect the friction between the car and surface area and so it would decrease the stopping distance of a car. Different surface areas are harder for the car to overcome for example sand is rough and has a greater resistance so the car would need more energy to travel over sand than a smooth surface. Velocity is a similar thing to speed, it is the speed of an object

...read more.


















From my preliminary results I have found that the height of the ramp does affect the speed of the car – the higher the ramp is the faster the car will travel. This backs up my prediction, which I made earlier and I can relate my conclusion to my scientific knowledge because I already know that when the car is placed at the top of the ramp it has a certain amount of gravitational potential energy, which is converted into kinetic energy when the car travels down the ramp. So the higher the ramp is, the more gravitational potential energy there will be to be converted into kinetic energy, resulting in more kinetic energy making the car travel at a faster speed.

     From the line of best fit on my graph I can see that there must be a pattern because there is strong positive correlation between the points and there is a straight line, which shows that the height and the speed are in proportion to each other.

On my graph I have drawn dotted lines up to the curved line to find the results I should have according to the line of best fit. These are shown in a table and allow me to see where I have any errors in my experiment.


...read more.


height               1.7              3.5            5           6.8       8.5      

speed                0.30          0.47         0.61       0.70       0.80

1st difference                0.17   0.14        0.09            0.10         2nd difference                                  

                                            0.03       0.05          0.01

I looked for the 1st difference and then the 2nd difference however I could not find any patterns so I cannot form a mathematical term for the results.


I think my experiment was quite a good one because my method was clear and easy to follow and my results were quite accurate. I was able to use information, which I had found out in the preliminary experiment in order to carry this one out successfully by using a precise method, which was accurate.

There were 3 results which were slightly off the line of best fit on my graph this could be because the light gates were not working correctly or the laptop didn’t record the correct results. I could improve the method by doing the experiment more to ensure accuracy although I used precise equipment so the results should already be quite accurate. Although there are still some slight errors in the experiment I think that the evidence is good enough to support my conclusion and prediction, which is the higher the ramp is the faster the object will travel. To improve my investigation and extend it I could use a digital meter to make the results more accurate, if the experiment was to be extended we could use other vehicles to roll down the ramp, using different size, weight and type of wheels to see if this has any effect on the speed.


...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    Stopping distances of toy cars travelling down a ramp

    3 star(s)

    They are proportionate as I predicted. The stopping height has a constant effect on the stopping distance because in the equation F =mgh. If the height is doubled the equation becomes F2s=mg2h. My results although quite accurate are not exact as the do vary a little.

  2. To investigate into how the height of a ramp affects the speed of a ...

    velocity, so that the graph will be a curve, the car will not increase his speed as shown in the graph. There is a point is a bit out of the curve, perhaps this experiment cannot measure so accurate, the speed was to fast, so that errors will make very

  1. Rolling a Car down a ramp.

    angle at the base of the ramp against the horizontal surface at each of the 5 heights. Preliminary Results My results from the preliminary test showed that the heights of the ramp were too high and because they were too high the car went too fast so I didn't get accurate readings.

  2. Investigating the speed of a toy car travelling down a ramp

    the light gate which will give me an average reading automatically. To make sure my weight readings are accurate I am going to use scales to weigh the original mass of the car to give me a starting point for the range of reading I will take.

  1. Investigation is to see how changing the height of a ramp affects the stopping ...

    may have helped a lot on the readings I would have taken. Also I believe I could have taken more readings to gain a more reliable average. Therefore in my final investigation I shall take three readings. GCSE PHYSICS COURSEWORK: INVESTIGATING STOPPING DISTANCE FINAL INVESTIGATION AIM The aim of this

  2. Investigate and measure the speed of a ball rolling down a ramp.

    After I finish all the heights, and all their repeats, I would take apart the apparatus carefully, and place each part in its designated place. Safety One of the most important aspects of the experiment is safety. As it would be the safety of my colleagues in the class.

  1. Factors Affecting the Speed of a Car after Freewheeling down a Slope

    Friction between the surfaces of contact 5. Air resistance There are two ways in which the experiment will be measured: * Meter ruler * Ticker timer and Ticker tape SAFETY PRECAUTIONS AND PROCEDURES 1. Care will be taken with the power supply, as electricity is being used.


    I will use the following formula: Angle=height Horizontal -inverse tangent length I will calculate this angle Safety Safety is very important in a scientific experiment even if the experiment may seem harmless.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work