• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

How to find the accurate concentration of the Sulphuric Acid.

Extracts from this document...

Introduction

Plan: How to find the accurate concentration of the Sulphuric Acid. Reaction Sodium Carbonate + Sulphuric Acid Sodium Sulphate + Water + Carbon Dioxide Na2CO3 + H2SO4 Na2SO4 + H2O + CO2 - I have chosen to use Methyl Orange as the indicator for this experiment, this is because Sodium Carbonate Solution is a weak alkali and Sulphuric Acid is a strong acid. Methyl Orange indicator solution works best between a weak alkali and a strong acid, therefore Methyl Orange will work most effectively because it is at its optimum environment between these two solutions. Quantity of Sodium Carbonate to be used Number of moles of Sodium Carbonate = Volume x Concentration Volume in decimetres = Volume / 1000 = 250 /1000 = 0.25 Number of moles = 0.25 x 0.1 = 0.025 Mass of Sodium Carbonate to be used = Number of moles x Molar mass = 0.025 x 106 Mass to be used = 2.65 Apparatus .100cm3 conical flask .25cm3 pipette . Pipette filler . Burette . Methyl Orange indicator solution . Wash bottle filled with distilled water .100cm3 glass beaker x2 .250cm3 volumetric flask .25cm3 Sulphuric acid solution .250cm3 Sodium Carbonate Solution containing 2.65g of anhydrous sodium carbonate Method Making the solution of Sodium Carbonate -Roughly weigh weighing bottle and lid on balance. -Work out new mass and add 2.65g of Sodium Carbonate. -Empty contents into beaker and add 50cm3 of distilled water, stir well until dissolved. -Transfer contents of beaker into volumetric flask using a funnel to avoid spillage. -Rinse beaker with distilled water and transfer to flask. -Top up volumetric flask with distilled water carefully up to the 250cm3 line and then shake solution thoroughly. ...read more.

Middle

Initial weight of bottle and contents = 16.6618 g Weight of bottle and lid alone = 13.9823 g Weight of just contents = Weight of bottle and contents - weight of bottle and lid = 16.6618 - 13.9823 = 2.6795 g Molar mass of Sodium Carbonate = 106 g Therefore: Number of Moles of Sodium Carbonate used = 2.6795 / 106 Number of moles = 0.025278301 Volume of Solution = 250 cm3 (inside volumetric flask) Therefore: Concentration of Sodium Carbonate solution = 0.025278301 / 250 Concentration of Sodium Carbonate solution = 1.011 x 10-4 x 1000 = 0.101 mol dm-3 to 3sf Therefore, concentration of Sodium Carbonate solution = 0.101m Concentration of Sulphuric Acid Number of Moles = volume of acid x concentration / 1000 - Dividing by 1000 converts the units into decimetres. - As stated in the plan, the reaction between the Sodium carbonate solution and the Sulphuric Acid is a one to one relationship ( 1:1 ) meaning that one mole of Sodium Carbonate reacts with one mole of Sulphuric Acid. By calculating the number of moles of the Sodium Carbonate, due to the relationship the number of moles of Sulphuric Acid is therefore the same. Number of moles of Sodium carbonate in 25 cm3 = 0.101 / 1000 x 25 = 2.525 x 10-3 - So therefore the number of moles of Sulphuric Acid in 23.6 cm3 = 2.525 x 10-3 - The average titre = 23.6 cm3 - The average titre in decimetres = 23.6 x 10-3 - Substitute the values worked out into the formula. 2.525 x 10-3 moles = 23.6 x 10-3 x concentration - Rearrange to find concentration of the Sulphuric Acid. ...read more.

Conclusion

By rinsing all of the equipment thoroughly with distilled water after every titration, then the exact quantities required would have been used. This would produce more reliable results due to it being more accurate. If more care was taken during the procedure then the results would have been more reliable. By titrating drop by drop towards the turning point of the experiment, the exact moment of colour change would have been identified. Whilst titrating, rinsing the neck of the conical flask washed all the particles of the acid that were on the side into the reaction, helping to achieve accurate results during the experiment because all intended acid was used. By swirling the conical flask during the titration, the solution was agitated and so all particles were evenly distributed. This helped to make the experiment more accurate. When reading the value from a burette, if a piece of paper is held behind the burette then it stops the light from interfering with the reading off of it. This makes it easier to read exact measurements. The procedures during the experiment that were necessary to ensure that the results were accurate, were, repeating the titration, by rinsing out the conical flask and using fresh amounts of Sodium carbonate solution after every titration. This would have cancelled out the possibility of error if some of the solution remained in the conical flask. By finding maximum and minimum values it shows how reliable the measurements were. This is key in gaining accurate results. These factors were essential in producing results that are accurate and reliable. Methods that would improve the experiment, all increase the accuracy and reliability of the titration if it was done again. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. In order to find out the exact concentration of sulphuric acid, I will have ...

    Pour entire sodium carbonate solution into 250cm3 conical flask. 14. Now rinse the burette with sulphuric acid in order to wash out any impurities. 15. In a similar way wash out the graduated measuring cylinder, in order to clean it out.

  2. To carry out a titration between a strong acid and a weak alkali, to ...

    Dissolve the sodium carbonate using the minimum amount of distilled water (less than 100cm3). Stir it with the glass rod in the 250cm3 beaker until it has dissolved. 6. Transfer the dissolved sodium carbonate to a volumetric flask using a funnel.

  1. Determine the concentration of sulphuric acid by acid-base titration.

    * Burette: is used to deliver precisely-measured Sulphuric acid to the flask, the burette also able you to read titres to 2 decimal places therefore it very accurate. * Clam stand: used to hold the burette. * 25cm3 pipettes: A pipette is used to measure small amounts of sodium carbonate very accurately.

  2. The Use of Volumetric Flask, Burette and Pipette in Determining the Concentration of NaOH ...

    A base accepts (removes) hydrogen ions (H+) from the solution, or donates hydroxide ions (OH-) to the solution. Both actions will lower the concentration of hydrogen ions, and thus raise pH. By contrast, an acid donates H+ ions to the solution or accepts OH-, thus lowering pH.

  1. Planning of Titration

    * Stir using a glass rod crush and to dissolve the solid completely. * Transfer the solution into the volumetric flask using the funnel. Remember: pour down the glass rod; Remove the last drop of solution from the glass rod onto the funnel.

  2. In this experiment I am finding out how much sulphuric acid is present in ...

    This is done because impurities, or any precipitates left over can have an effect on the results of the experiment, or can alter the mass of solution. 3. The sodium carbonate solid should be transferred in to a 250-cm3 beaker.

  1. To find the accurate concentration of sulphuric acid, by making up a standard solution, ...

    p 3 Remove and add 2.65g of the solid. Weigh again. Record again onto a chart such as this: Top Pan Balance: Weight of Bottle and Solid X g Weight of Bottle X g 4 Remove the weighing bottle and place a lid on it.

  2. Find the exact concentration of sulphuric acid in a solution through a titration.

    DIAGRAM Lab equipment Use Spatula To place sodium carbonate in boat Boat To place sodium carbonate on scales Digital weighing scales To measure sodium carbonate 250 cm� beaker + glass stirring rod To dissolve the sodium carbonate in to distilled water 250 cm �Conical flask To further shake sodium carbonate

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work