• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4

# I am going to heat up three different metals: 1kg of copper; 1kg of iron and 1kg of aluminum to find compare their rates of heat conductivity

Extracts from this document...

Introduction

Heating Metals Coursework Plan Aim: I am going to heat up three different metals: 1kg of copper; 1kg of iron and 1kg of aluminum to find compare their rates of heat conductivity. Method: The metals will be cylinders, all of equal mass. They will have 2 holes one for a thermometer (to record the temperature) and another for a 50-Watt electric emersion heater (to heat the metals). I will take a reading every minute for ten minutes. As I only have time to heat each metal for ten minutes, I have decided to heat all the metals to the same temperature before starting the time. This is so that when I plot my graph of the results, I will not have to wait for the densest of the 3 metals to begin to heat up before I get a curve to compare to the results of the other metals. ...read more.

Middle

it gets to hot, to prevent this we will ensure that enough time is given for the metal to cool down after the experiment before the metal is touched. The second danger is of electrocution, we will make sure before the experiment begins that all the electrical equipment is in good and working order and is safe. Prediction: I predict the higher the density of the metal the longer it will take to heat up and the lower the density the quicker it will heat up. I think this because the denser a metal the more atoms it has so therefore there is more atoms to heat up meaning a denser metal is slower to gain heat than a less dense metal because it has more atoms. The densest of the metals is copper; followed by iron then the least dense is aluminium. ...read more.

Conclusion

This shows again that aluminium is a better conductor than iron and copper both of which have a higher density. The results support my conclusion because I predicted that the lower the density the quicker it would take to heat up and the higher the density the slower it would take, as I have said this is what we got from our results. Evaluation My method was effective because it gave us very accurate results, was relatively safe and was very easy to carry out. We got no anomalous results which also shows it was a very effective method. To improve our experiment we could have recorded for longer amount of time, we could have used a digital thermometer this would have made our results perfectly correct. Future work could involve using other types of metals, using different weights of metals or using an electric emersion heater of a higher wattage. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Classifying Materials section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Classifying Materials essays

1. ## The rates of reaction between CaCO3 and HCL

From the results of the graph without studying the data west looks to be purer, this is based on the scientific theory that more produced yielded form a reaction the more atoms available to react. So the higher mass of CO2 produced from the reaction the conclusion can be draw that more atoms of HCl or CaCO3 reacted.

2. ## The role of mass customization and postponement in global logistics

The initiative was prompted by the discovery that inventories at the dealers were exceptionally high but the parts actually needed were rarely in stock. Volvo set up a national warehouse stocking the full line of truck parts and used FedEx Logistics to ship parts within 24 hours to the roadside repair site.

1. ## Investigate a factor that effects the change in temperature between iron and copper sulphate.

If for each mass of iron I put into the solution had a different volume of copper sulphate it would make the investigation unfair; as if each boiling tube had a different volume of copper sulphate we would not see the effect of the increasing mass of iron filings on the rise in temperature.

2. ## Gold. For thousands of years, gold has been regarded as the finest and ...

If unsuccessful, the resulting metal would be heavy and weak. Alloying involves trial and error. In gold jewellery, the metals alloyed with gold not only increase its strength, but also change its colour. Gold is most often alloyed with copper, zinc or silver.

1. ## Investigating how the mass of iron fillings affects the mass of copper displaced from ...

Iron + Copper Sulphate � Copper + Iron Sulphate Fe + CuSO4 � Cu + FeSO4 56g + 160g � 64g + 152g 216g 216g Fair Test: To make this investigation a fair test I made sure that the same apparatus was used as they can affect how much iron is displaced in 3 minutes.

2. ## Specific Heat Lab

cmetal= (.401*4180*2.20)/(.05348*80.00) cmetal= (3687.596)/(42.784) cmetal= 861.91 To find the percentage error for our specific heat we use the following formula: |Accepted Value - Our Value | / (Accepted Value * 100) |380 - 861.91| / 380 * 100 581.91/38000 126.82% The error for Brass on our first trial is 126.82%

1. ## Unknown Metals

Melting Points: (All under 7000 C) Al = 6600 Li = 1800 Zn = 4200 Na = 980 Sn = 2320 Rb = 390 K = 630 Cs = 290 Pb = 3270 Carbon (as diamond and graphite) = sublimes (turns from solid to gas)

2. ## Periodicity three :Trend in the physical properties of the alkaline earth metals.

(If you are unclear about the explanation of this you may need to look back at your earlier work on electronic configuration) 3) Electronegativity A graph showing the trend in electronegativity down group II is shown below : Notice that electronegativity decreases as the group is descended (i.e.as the group is decended the elements attract electrons less strongly).

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to