• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Identification of an unknown organic compound

Extracts from this document...


Identification of an unknown organic compound Aims: The aim of the identification experiment is to use a variety of tests to ultimately go to one functional group to identify an unknown organic compound. It could be one of the following: * Alkenes * Primary alcohol * Tertiary alcohol * Aldehyde * Ketones * Carboxylic acid * Ester * Phenol I will take each of the supplied functional groups and talk about them generally and identify a test which will be most suitable to identify whether that functional group is present in the unknown organic compound we are provided with. If tests need to be taken to see if oxygen, carbon dioxide or hydrogen gas has been given off, we will do the following: * Hydrogen - is present if we light a splint and put it in the test tube and it goes out with a squeaky pop. * Oxygen - is present if we light a wooden splint and blow it out and put it in the test tube and it rekindles. * Carbon dioxide - is present if when bubbled through lime water- it goes cloudy. ...read more.


If the test is positive the solution a silver mirror will form. * Fehling's solution - Mix 0.5cm3 of Fehling's solution A with 0.5cm3 of Fehling's solution B in a small test tube. Add 2 or 3 drops of the unknown organic compound and heat the tube. If the test is positive the solution will go from blue to red. I have decided to use the Fehlings test and the tollens reagent as these two tests will make sure it has a aldehyde present we can eliminate that to find out whether the unknown compound is a ketone . Fehlings test, in the the blue Cu2+(aq) complex solution forms a brown precipitate of copper(I) oxide Cu2O(s). The aldehyde reduces the copper ion and in the process gets oxidised to a carboxylic acid. Apparatus needed: * Fehlings solution A * Fehlings solution B * Test tube * Unknown organic compound * Hot water bath * Beaker For tollens * Silver nitrate solution * Sodium hydroxide * Ammonia solution * Water bath * Unknown organic compound When these two have been used and we have found out that it is not an aldehyde we will be use the 2-4-dinitrophenylhydrazine test to test positive for a ketone as aldehyde has been eliminated Equation for tollen's : RCHO + 2{Ag(NH3) ...read more.


is substituted to give 0 base + water The reason why phenol produces water is because it is partially sparingly soluble in water. Therefore phenol ionizes slightly in water so the -OH bond breaks to form a hydrogen ion and phenoxide ion. The bond is more readily in phenol than water so phenol is more acidic than water (chemistry 2 endorsed by OCR page 17 in the blue box) The identification test I will use for this will be using ferric (iron iii) chloride. I will add 5 drops of ferric chloride; add 2 drops of substance and 2 drops of water. If the test is positive the color of the solution will turn purple. The Iron(III) ions form strongly coloured complexes with several organic compounds including phenol. The colour of the complexes vary from compound to compound. You get an intense violet-purple solution formed when phenol is added to the solution. (http://www.chemguide.co.uk/organicprops/phenol/other.html) Apparatus needed: * Ferric chloride * Test tube * Water * Unknown organic compound Other tests I could have used would have been adding the substance to sodium hydrogen carbonate. If it doesn't dissolve this would have suggested a phenol was present. Flow chart of tests ?? ?? ?? ?? 13c2 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Peer reviewed

    Identification of an Organic Unknown.

    4 star(s)

    The oxygen in the OH group has two lone pairs of electrons, these can overlap with the delocalised ? electrons. Overall, the ? electron charge density is increased (especially at the 2, 4 and 6 positions). This is why this reaction happens only with phenol and not with the carboxylic acid.

  2. In this investigation I will get a number of unknown organic compounds to which ...

    This shows that there is an ester present. Using the NMR spectrum I can find the exact positioning of the protons present. There are 8 protons present in 3 different environments. A chemical shift at 3.3-4.3 shows -O-CH2-R is present. From all the information present I have deduced Unknown B to be ethyl ethanoate C4H8O2.

  1. To identify an organic unknown using basic cohesive chemical tests to discover the functional ...

    The I.R shows as expected there is a Hydroxide group present and a C=O present which makes up the Carboxyl group. The nmr tells us that the compound has in total 6 hydrogen atoms present with a triplet between 0.7-1.6 a R-CH3.

  2. ‘The Relative Strength of an Unknown Acid’.

    When filled up to the 250cm3 correctly, a volumetric flask is calibrated to be accurate to within 0.6cm3 and therefore should not introduce an error of more than 0.15%. Afterwards the next error I must take into account is the accurate determination of end-points.

  1. The action of amylase and pectinase in varying amounts when clarifying cloudy apple juice.

    I decided to continue with the use of 35?C because over 35?C then the pectinase enzyme would denature, however, below 95?C the ?amylase enzyme woul not denature but it would not be as effective. I decided at first to keep with the 30-minute time.

  2. Obtain pure samples of Ethanol (CH3CH2OH) and Ethanoic Acid (CH3COOH) from fermented Yeast (Saccharomyces ...

    Therefore no vapour is able to escape into the atmosphere. 10cm3 of 1M Sulphuric acid, which was measured in a 10cm3 measuring cylinder, was poured into a pear shaped flask. Into this 5g of Sodium dichromate (VI), which was weighed on an electronic scale, was added in using a funnel.

  1. Titrating Sodium hydroxide with an unknown molarity, against hydrochloric acid to find its' molarity.

    This means that each titration should therefore have used 25cm3 of the solution. The number of moles that were used in the titrations can be worked out by using the following method: 1 of mass/g = 2.65g x 1 = 0.0025 moles 10 RMM/gmol-1 106gmol-1 10 From this equation I

  2. Identification of an Organic Unknown.

    Ketones are not readily oxidised at all. They have no effect on mild oxidising agents. This is because they do not have an oxidisable hydrogen atom joined to the carbonyl group. Primary alcohols produce aldehydes, e.g. ethanal, these contain a C=O group and here the carbon atom is bonded to a hydrogen.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work