• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26

In this investigation I'll attempt to find out how electrical resistance varies for two different conductors, nichrome and constantine, when changing the length and the thickness of the wire.

Extracts from this document...

Introduction

Mitchell Black                Physics Coursework

Physics Coursework

Investigation into the Factors affecting the Resistance of a Conductor

By Mitchell Black

April 2003

Introduction

In this investigation I’ll attempt to find out how electrical resistance varies for two different conductors, nichrome and constantine, when changing the length and the thickness of the wire.

Variables

  1. Length – The longer the length of the wire the further the electrons will have to travel along it, increasing the resistance. Because of this the length increase should be proportional to resistance increase.
  2. Cross section of the wire - If the wires width is increased the resistance will decrease. This is because of the increase in the space for the electrons to travel through. Due to this increased space between the atoms there should be less collisions.
  3. Voltage passed through the wire – The higher the voltage the more electrons there will be passing through the wire, this should cause more collisions, causing higher resistance.
  4. Temperature – Resistance produces heat, but heat also increases resistance. This is because the atoms in the wire vibrate more due to their increased energy. This causes more collisions with the electrons as the atoms vibrate into the path of the electrons.
  5. Type of wire used – Obviously different conductors have different resistivity, so the same conductor should be used throughout the experiment.

For this experiment I will keep voltage, temperature, and the type of wire used constant.  I shall vary length and cross section of the wire, as these are the factors I’m investigating.

...read more.

Middle

  1. Steps 1-5 will then be repeated with Nichrome wire of width SWG26 SWG28 SWG36 and SWG40.
  1. The same will be done for Nichrome wire.

As the SWG number increases the cross sectional area of the wire decreases.

Results

Results for different thicknesses of Constantine wire

Length

Resistance SWG 22

Resistance SWG 26

Resistance SWG 28

Resistance SWG 36

Resistance SWG 40

5cm

0.9

1

0.8

1.7

2.8

10cm

1

1.1

1

2.5

4.9

15cm

1.1

1.3

1.3

3.2

7.2

20cm

1.1

1.3

1.5

4

8.9

25cm

1.4

1.7

1.6

4.7

11.1

30cm

1.6

2.1

1.9

5.5

12.9

35cm

1.3

2.5

2.1

6.4

16.6

40cm

1.6

3.0

2.6

7.3

17.3

Results for different thicknesses of Nichrome wire

Length

Resistance SWG 22

Resistance SWG 26

Resistance SWG 28

Resistance SWG 36

Resistance SWG 40

5cm

1.0

2.1

2.2

3.7

7.3

10cm

1.1

2.4

2.8

5.7

11.1

15cm

1.3

2.7

3.3

7.6

16.3

20cm

1.5

3.1

3.8

9.4

20.7

25cm

1.7

3.4

4.3

11.4

26.0

30cm

1.8

2.8

3.6

12.1

29.3

35cm

2.2

4.0

5.2

15.2

35.2

40cm

2.4

4.4

5.9

17.4

40.6

Area of Nichrome wire

SWG

Radius (cm)

Resistance (ohms)

Area (cm)

Area x 10  

1/area

22

0.0355

1.2

0.00396

39.6

252.52

26

0.0225

2.8

0.00159

15.9

628.93

28

0.02

3.6

0.00126

12.6

793.65

36

0.01

12.1

0.000314

3.14

3184.71

40

0.006

29.3

0.000113

1.13

8849.56

...read more.

Conclusion

3 bar enough to effect results than a 2cm3 wire.Looking back on the procedure of my experiment I now realise that I should’ve taken 3 readings, and then found the average in order to gain more accurate results.I think that some of my anomalous results may be accounted for due to bad contact through the crocodile clip.  The only way I can see to get round this problem is to have boards especially made for this experiment, which have a sliding contact, which you slide to the correct length, and then somehow secure it to the wire.

Anomalies

The only anomalies I could identify were on the curved graph for constantine (area: resistance), it was using the SWG 28 board.  In turn affecting the graph for 1/Area of constantine, with an anomaly also on SWG 28To me this suggests that the board was faulty, maybe there was a kink or a bend in the wire.  I’ve circled this results on the graph.  Also I’ve marked in where I’d expect it to be in pen.

Further Work

To take the investigation one step further, other factors could be investigated, such as voltage.  Using the same two metal wires, on a relatively medium thickness (such as SWG 28), connected to an ohmmeter.  The voltage should be increased, and the resistance reading recorded each time.  I think this investigation would show that as the voltage increases so does the resistance, because more voltage means more electrons moving around and colliding, and colliding electrons cause resistance.  The graph would look something like the sketch below.

Resistance                      

      (Ω)

                         Voltage (Volts)

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. An Experiment To Find the Resistivity of a Wire

    This error may have been encountered while measuring the length of the wire. This is because it simply was not very practical to hold a piece of wire straight, whilst holding it next to a ruler and then trying to accurately fix crocodile clips to the right part on the wire.

  2. Resistance of a Wire Investigation

    of this alloy is not affected by temperature. Therefore, in these experiments Ohm's Law does not apply. SIXTH The four factors that affect the resistance of a piece of wire: * Length, Diameter, or thickness, * Temperature and * The type of metal.

  1. An in Investigation into the Resistance of a Wire.

    experiment shows me that E32 has the highest resistance of the three wires. This is because it has a smaller cross sectional area than the other wires. The thicker the wire is, the lower the resistance so the thinner the wire is the higher the resistance.

  2. Investigate the resistance of different wires and how at different lengths the voltage increases ...

    and the atomic number (Z). Knowing the structure of the atom will help me plan my experiment as I will need to be able to work out how many electrons in the outer shell and how its sets up so I will know the theory behind How an atom I

  1. Discover the factors affecting resistance in a conductor.

    Ammeter: Same reasons as the voltmeter, but placed in series in the circuit Digital Multimeter: This will also be used for different circuits. Useful, because it generates its own power supply and can also convert the amps and volt directly into resistance.

  2. An experiment to find the resistivity of nichrome

    I then recorded the voltage readings from the voltmeter which corresponded to the length of the wire being used. *The temperature of the wires in the circuit needed to be kept constant to prevent the whole circuit from overheating. I managed to do this by quickly switching off the power

  1. Investigation of Resistivity of Nichrome wire

    Readings were recorded in the results table. This was repeated at different volt settings, 4 - 16 volts. The whole procedure was once again repeated for another nichrome wire of different dimensions, being at 28 gauge and of 0.5 metre. Results Table 1: the resistivity of nichrome wire at 32 gauge and 1 metre length.

  2. An Investigation to Find the Resistivity of Wires

    Resistance is measured in Ohms (?). Resistivity As above I have described what resistivity is. I used the formula: ??? = RA L With the resistivity I could then plot graphs to display the relationship between the data. To plot some of the graphs I needed to use Length/Cross-sectional Area and 1/Cross-sectional Area as values.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work