• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26

In this investigation I'll attempt to find out how electrical resistance varies for two different conductors, nichrome and constantine, when changing the length and the thickness of the wire.

Extracts from this document...

Introduction

Mitchell Black                Physics Coursework

Physics Coursework

Investigation into the Factors affecting the Resistance of a Conductor

By Mitchell Black

April 2003

Introduction

In this investigation I’ll attempt to find out how electrical resistance varies for two different conductors, nichrome and constantine, when changing the length and the thickness of the wire.

Variables

  1. Length – The longer the length of the wire the further the electrons will have to travel along it, increasing the resistance. Because of this the length increase should be proportional to resistance increase.
  2. Cross section of the wire - If the wires width is increased the resistance will decrease. This is because of the increase in the space for the electrons to travel through. Due to this increased space between the atoms there should be less collisions.
  3. Voltage passed through the wire – The higher the voltage the more electrons there will be passing through the wire, this should cause more collisions, causing higher resistance.
  4. Temperature – Resistance produces heat, but heat also increases resistance. This is because the atoms in the wire vibrate more due to their increased energy. This causes more collisions with the electrons as the atoms vibrate into the path of the electrons.
  5. Type of wire used – Obviously different conductors have different resistivity, so the same conductor should be used throughout the experiment.

For this experiment I will keep voltage, temperature, and the type of wire used constant.  I shall vary length and cross section of the wire, as these are the factors I’m investigating.

...read more.

Middle

  1. Steps 1-5 will then be repeated with Nichrome wire of width SWG26 SWG28 SWG36 and SWG40.
  1. The same will be done for Nichrome wire.

As the SWG number increases the cross sectional area of the wire decreases.

Results

Results for different thicknesses of Constantine wire

Length

Resistance SWG 22

Resistance SWG 26

Resistance SWG 28

Resistance SWG 36

Resistance SWG 40

5cm

0.9

1

0.8

1.7

2.8

10cm

1

1.1

1

2.5

4.9

15cm

1.1

1.3

1.3

3.2

7.2

20cm

1.1

1.3

1.5

4

8.9

25cm

1.4

1.7

1.6

4.7

11.1

30cm

1.6

2.1

1.9

5.5

12.9

35cm

1.3

2.5

2.1

6.4

16.6

40cm

1.6

3.0

2.6

7.3

17.3

Results for different thicknesses of Nichrome wire

Length

Resistance SWG 22

Resistance SWG 26

Resistance SWG 28

Resistance SWG 36

Resistance SWG 40

5cm

1.0

2.1

2.2

3.7

7.3

10cm

1.1

2.4

2.8

5.7

11.1

15cm

1.3

2.7

3.3

7.6

16.3

20cm

1.5

3.1

3.8

9.4

20.7

25cm

1.7

3.4

4.3

11.4

26.0

30cm

1.8

2.8

3.6

12.1

29.3

35cm

2.2

4.0

5.2

15.2

35.2

40cm

2.4

4.4

5.9

17.4

40.6

Area of Nichrome wire

SWG

Radius (cm)

Resistance (ohms)

Area (cm)

Area x 10  

1/area

22

0.0355

1.2

0.00396

39.6

252.52

26

0.0225

2.8

0.00159

15.9

628.93

28

0.02

3.6

0.00126

12.6

793.65

36

0.01

12.1

0.000314

3.14

3184.71

40

0.006

29.3

0.000113

1.13

8849.56

...read more.

Conclusion

3 bar enough to effect results than a 2cm3 wire.Looking back on the procedure of my experiment I now realise that I should’ve taken 3 readings, and then found the average in order to gain more accurate results.I think that some of my anomalous results may be accounted for due to bad contact through the crocodile clip.  The only way I can see to get round this problem is to have boards especially made for this experiment, which have a sliding contact, which you slide to the correct length, and then somehow secure it to the wire.

Anomalies

The only anomalies I could identify were on the curved graph for constantine (area: resistance), it was using the SWG 28 board.  In turn affecting the graph for 1/Area of constantine, with an anomaly also on SWG 28To me this suggests that the board was faulty, maybe there was a kink or a bend in the wire.  I’ve circled this results on the graph.  Also I’ve marked in where I’d expect it to be in pen.

Further Work

To take the investigation one step further, other factors could be investigated, such as voltage.  Using the same two metal wires, on a relatively medium thickness (such as SWG 28), connected to an ohmmeter.  The voltage should be increased, and the resistance reading recorded each time.  I think this investigation would show that as the voltage increases so does the resistance, because more voltage means more electrons moving around and colliding, and colliding electrons cause resistance.  The graph would look something like the sketch below.

Resistance                      

      (Ω)

                         Voltage (Volts)

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    The factors affecting the resistance of a metalic conductor.

    4 star(s)

    a smaller cross sectional area and pass current through it via a parallel circuit, the resistance is slightly higher than when using a normal circuit. This is because placing resistors in parallel is equivalent to increasing the cross-sectional area A through which current can flow.

  2. An Experiment To Find the Resistivity of a Wire

    Most of the errors on my graphs were too small to be seen. CONCLUSION The graph of Resistance against length was a straight line through the origin, which means R, is directly proportional to L. This means that if the length is 0.15m and the Resistance is 2.50ohms, then if length is doubled to 0.30m, Resistance also doubles to 5.00ohms.

  1. An in Investigation into the Resistance of a Wire.

    For example 50cm on the E32 wire has the resistance of 4.41 Ohms and in the length 100cm it has the resistance of 8.56 Ohms. This shows me that if I am going to investigate in the relationship between the length and the resistance I will need a larger range of lengths to get a more accurate result.

  2. Resistance of a Wire Investigation

    The only one that does not is the point at 90cm, which was exactly at the point that the black mark (mentioned previously) was found to be. Wire 2, on the other hand, had three main anomalous results: at 50, 80, and 90cm.

  1. Discover the factors affecting resistance in a conductor.

    All wires must be checked for breaks or any bare wire that may show, otherwise this could result in electrocution of the user. The method will be performed taking into account all of the laboratory safety precautions in order to perform a safe investigation.

  2. Investigate the resistance of different wires and how at different lengths the voltage increases ...

    Range of observations For my experiment I shall be doing 7 different lengths of wire with three checks each and I will be doing two in-between experiments with three checks each and that shall be for each of the four types of wire.

  1. An Investigation to Find the Resistivity of Wires

    Resistance is measured in Ohms (?). Resistivity As above I have described what resistivity is. I used the formula: ??? = RA L With the resistivity I could then plot graphs to display the relationship between the data. To plot some of the graphs I needed to use Length/Cross-sectional Area and 1/Cross-sectional Area as values.

  2. An experiment to find the resistivity of nichrome

    I then recorded the voltage readings from the voltmeter which corresponded to the length of the wire being used. *The temperature of the wires in the circuit needed to be kept constant to prevent the whole circuit from overheating. I managed to do this by quickly switching off the power

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work