• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6

# Investigate and compare the amount of energy released during the combustion of alcohols with practical and theoretical combustions.

Extracts from this document...

Introduction

Chemistry Coursework Objective My aim is to investigate and compare the amount of energy released during the combustion of alcohols with practical and theoretical combustions. Combustion (burning) is the reaction of substance with oxygen. I aimed to use four different alcohols, these being: * Ethanol * Butanol * Proponol * Methanol Method I set up the apparatus as the diagram shows: To start the experiment I weighed the empty burner using electronic scales, and then added 75ml of the alcohol I was using, and then weighed it again. I then calculated the mass of alcohol in the burner. I then took the temperature of the water, and then lit the burner. I decided to keep the experiment running each time until the water had risen 200c. when this had happened I blew out the burner, and re-weighed it, so that I could calculate how much alcohol had been burned. At this point I used the formula: Energy = Mass of Water x Temperature Rise x Specific heat Capacity (g) ...read more.

Middle

+ (496 x6) (743 x8) (463 x10) O-C x1 360 ---------- ---------- ------------ O-H x1 463 2976 5944 4630 ------------ 5575 8551 10574 8551-10574 = -2023 Practical Start Temperature End Temperature Start Mass End Mass Mass Used 23 75 182.09 177.86 4.23 50g x 520 x 4.2 191035.461 ------------------- x 74 = --------------- = 191.035461 4.23 1000 Proponol C3H7OH + 4.5O2 3CO2 + 4H2O H H H O=O C=O H-O-H | | | O=O || H-O-H H - C - C - C - C - O - H + O=O C + H-O-H | | | O=O || H-O-H H H H (O=O%2) C=O || C || C=O || C Theoretical H - C x7 (412 x 7) O=O x (4.5) C=O x6 H - O x8 C - C x2 (348 x2) + (496 x 4.5 (743 x6) + (463 x8) O - C x2 360 --------------- ---------- ------------- O - H x1 463 2232 4458 3704 ---------------- 4403 6635 8162 6635 - 8162 = -1527 Practical Start Temperature End Temperature Start Mass End Mass Mass Used 25 45 184.9 184.0 0.9 21 41 ...read more.

Conclusion

The energy lost during the combustion has a)turned to water or steam and evaporated into the air. For example with Ethanol, when this is burned in air or oxygen the products are carbon dioxide and water. The water will evaporate into the air - this is where some of the energy goes as well as b)being taken up by breaking of bonds during the burning of the substance. When bonds are formed energy is released. If bonds that hold particles are to be broken or changed then energy has to be supplied to enable this to happen. The change is the difference between the energy liberated to form the bonds and that required to break the bonds. The experiment also proves that Exothermic process is followed because energy is liberated during the reaction proven by the end masses of the substances being lighter than the start masses. The quantities of energy produced depends upon the quantity of the chemical burnt as shown by the results. I.e. the higher the level of mass burnt or combusted the higher the level of energy released. ?? ?? ?? ?? Page: 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Organic Chemistry section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Organic Chemistry essays

1. ## Experiment to investigate the heat of combustion of alcohols.

4 star(s)

These results are represented in a graph, shown on the next page. The values here are labelled as negative just to show that the reaction is exothermic. However on the graph, the values are positive to indicate how much energy is given off. Methanol Ethanol Propanol Butanol Pentanol Mass (g)

2. ## Investigating the Combustion of Alcohols

The theoretical value according to the Spreadsheet data and the Nuffield Data Book for the standard enthalpy change of combustion of methanol is -726 kJmol-1. Clearly, this value is much greater than that obtained in this experiment. This difference is most probably due to the large heat losses that occurred in this experiment.

1. ## Comparing the enthalpy changes of combustion of different alcohols.

If you relate the percentage error/precision error to the error obtained by incomplete combustion or the heat lost to the surroundings, we can see that in comparison these instruments are insignificant when compared to the error that would have been caused by these factors.

2. ## Energy Released From the Complete Combustion of Different Alcohols

By this step you can get the mass of fuel consumed by subtracting the final reading of the spirit burner from the initial reading of the spirit burner. 8) The calculation of the ?H value of the fuel can be given from the following formula: Energy Given Out by Fuel

1. ## 'Enthalpy of Combustion'.

Laboratory rules were followed at all times, these involved keeping workspace tidy, keeping stools under benches, not running etc. Equipment was always handled carefully and if any apparatus was hot, safety gloves were used. Results See Table and Graph on following pages Analysis As you can see, I obtained enough

2. ## Investigating the energy released from burning different alcohols.

this will be used to hold the water, copper is used because it is a very good conductor of heat and will transfer more energy from the combustion to the water than other less good conductors. The bottom of the can has been painted black to absorb more heat through radiation.

1. ## The Energy Content Of Different Fuels

Mass of fuel used = (227.2-225.9) = 1.3g 3. Molar mass of C3H7OH = 60 No. of moles = mass Molar mass No. of moles = 1.3 / 60 = 0.021666666 moles of fuel used 4. Energy used & produced to = mass of water X S.H.C X Temp rise heat the water Energy = 25 X 4.2 X 69 = 7245 joules 5.

2. ## GCSE Chemistry Revision Notes - everything!

For any element in the main block of the periodic table, it is easy to work out the electron arrangement in the atoms. 1. The number of energy levels or shells is the same as the period in which the element is found.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to