• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigate how the height of a ramp effects the speed of a bearing ball that is dropped form the top of the ramp.

Extracts from this document...

Introduction

Kanti Tjahjono

Ball Bearing Speed Record

Planning

        I am going to investigate how the height of a ramp effects the speed of a bearing ball that is dropped form the top of the ramp.

        I predict that the higher the ramp, the faster the ball will go. I think this is because as the ramp goes higher, the ball will be dropped higher, therefore there will be more gravitation potential energy the ball will have, making the ball goes faster as it will be transferred into kinetic energy toward the end.

        To back this theory, I will calculate the speed of the ball, (speed = distance – time). Also I will calculate the gravitation potential energy, (mass x gravity x height) and also the kinetic energy, (1/2 x mass x speed). I will use the results of the calculation to compare and to see if my prediction is correct.

        I will use the following equipments for my experiment:

  • A ball bearing
  • A ramp
  • A stopwatch (to time)
  • A ruler (to measure the heights of the ramp)
  • A scale (to weigh the ball bearing)

image00.png

...read more.

Middle

To make this experiment more accurate, I will do each experiment three times, then I will do the average for the speed. I will need to make sure that I have the same equipments if I would do this experiment on two different days. If I am going to this experiment on different day, I will need to make sure that the ball bearing is the weight and that the same person would do it, e.g. the person that is dropping the ball and the person that times it have to be the same. This so that my experiment is a fair test. And also I need to do at a room temperature, if the whether is too hot, the ball will be going faster as the ramp has some moist.

Methods

  1. Measure every cm up the side of the ramp to mark where to move it each time.
  2. Clamp the ramp to the wood.
  3. Move the ramp to the cm to want it to be.
  4. Let the ball go. Be sure not to push it.
...read more.

Conclusion

        And also at 6cm, the first timing wasn’t as accurate because the three times were spread out, 1.29s, 1.41s, 135s. This is just an example.  I think this is because the person who timed this might press the start/stop button to quickly or to slower. This happens quite a lot of time.

        As I have said in my conclusion, my results does proved my prediction and support my conclusion.

        If I was to do this experiment again, I will make sure that the person who drop the ball don’t give extra push and I would have done it more than three time.

        I could extend my experiment by perhaps looking at the mass of the ball bearing – different mass to see if it affects the speed or looking at the materials of the ball bearing.

-  -

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Investigating the relationship between drop height and bounce height when a ball is dropped.

    You can patterns occurring and also see where mistakes were made and need to be fixed. First of all I am reasonably happy with the results except maybe a few values, but then again nothing is perfect and without mistakes, it makes your evaluation shorter.

  2. The Bouncing Ball Experiment

    The ping-pong ball was taken to the place on the staircase we had measured to be 50cm from the ground. The ball was dropped from this height alongside the metre rulers with no force exerted on it. A different person standing on the ground directly in front of the metre rulers noted the height of the bounce.

  1. Physics ball bearing investiagtion

    to the full level, but don't go over the top, wait until they have set properly, and lift it out of the sand and onto the newspapers. 8- Then record your results like I have done of the graph paper.

  2. physics of the bouncing ball

    The ping-pong ball is hollow, reducing its mass and also making the pressure inside a lot higher, therefore the less its surface dents during a bounce and the more of its original energy it stores in the compressed air. Air stores and returns energy relatively efficiently during a rapid bounce, so the pressurized ball bounces higher.

  1. Investigate the correlation between the height at which a ball is dropped and the ...

    Instead, my graph was a curve, showing that when I was using the lower drop heights, more of the available kinetic energy was stored and used in the bounce. As the drop height increased, more and more of the kinetic energy in the ball is lost during the fall and

  2. To investigate how changing the height of a ramp affects the average speed of ...

    go and we started at 15cm because below that the trolley will hardly move. We have chosen to use a light gate as we found it a much more accurate method of measuring as it can measure to the nearest 100th of a second.

  1. To investigate how a height of a ramp affects the speed of a trolley ...

    We can use these equations to work out how fast and object drops until it hits the ground (speed): PE= mgh, where m -mass, g- acceleration due to gravity, and h- height. Kinetic energy = 1/2 (mass) x (velocity)2, 1/2 mv2 =mgh or v2 =2gh (when I remove the constants, H v2 look below)

  2. The aim of this coursework is to investigate how the height in which the ...

    Gradually the energy will be low graded by heat and sound, which are inefficient energies. Eventually the ball won't have enough energy to bounce back again due to the energies being wasted on sound and heat and so the height at which the ball bounces back will decrease.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work