• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

Investigate how the resistance of a wire is affected by the length of the wire.

Extracts from this document...

Introduction

Science Investigation

Resistance of a wire coursework

P

O

A

E

spg

Total mark =

Name

Ridwan Ibrahim

Form

Coleman

Teacher

Br. Ronald

Set

10 ACF Set 1


Aim:

To investigate how the resistance of a wire is affected by the length of the wire.

Theory

Introduction

Electricity travels through a conductor by means of free electrons. The conductor in this investigation is a nickel wire. The number of free electrons depends on the material of the conductor. The more free electrons there are, the better the conductor due to less resistance. For example, silver has more free electrons than iron; therefore it is a better conductor. The free electrons are given energy and this makes them move and collide with other free electrons. This happens across the length of the wire and thus electricity is conducted. Resistance is the result of energy loss as heat. It involves collisions between the free electrons and the fixed particles of the metal. These collisions convert some of the energy that the free electrons are carrying into heat.

The resistance of a length of wire is calculated by measuring the current in the circuit (in series) and the voltage across the wire (in parallel). The measurements are then substituted into the following formula:

V = I * R                (V = Voltage, I

...read more.

Middle

0

0

0

0

0

0

0

0

0

0

0

10

0.46

0.63

0.77

0.30

0.40

0.50

1.53

1.58

1.54

1.55

20

0.93

1.23

1.54

0.30

0.40

0.50

3.10

3.08

3.08

3.09

30

1.36

1.86

2.36

0.30

0.40

0.50

4.53

4.65

4.72

4.63

40

1.82

2.50

2.96

0.30

0.40

0.50

6.07

6.25

5.92

6.08

50

3.50

2.63

1.92

0.47

0.35

0.26

7.45

7.51

7.38

7.45

60

3.45

2.66

1.98

0.37

0.29

0.23

9.32

9.17

8.61

9.04

70

3.12

2.64

2.12

0.30

0.24

0.20

10.40

11.00

10.60

10.67

80

2.37

2.68

3.60

0.19

0.22

0.29

12.47

12.18

12.41

12.36

90

2.22

2.11

3.45

0.15

0.18

0.25

14.80

11.72

13.80

13.44

100

2.09

2.66

3.44

0.14

0.17

0.22

14.93

15.65

15.64

15.40


Compared to other results

In order to prove that my results are reasonably accurate, another results table is shown derived from another person who undertook the same investigation in the same environment.

Length (cm)

Potential Difference (v)

Current (I)

Resistance (ohms)

V1

...read more.

Conclusion

Actual resistance for particular length (ohms)

Percentage error (to two decimal places)        %

10

1.55

1.53

1.31

20

3.09

3.06

0.98

30

4.63

4.59

0.87

40

6.08

6.12

0.65

50

7.45

7.65

2.61

60

9.04

9.18

1.53

70

10.67

10.71

0.37

80

12.36

12.24

0.98

90

13.44

13.77

2.40

100

15.40

15.30

0.65

Evaluation

I believe that the investigation was moderately accurate. My evidence to support this is my average percentage error which is 1.24%. This error may have occurred due to a number of reasons. Firstly, it is impossible to keep the temperature constant throughout the whole experiment in a classroom laboratory. So due to heating of different appliances, the temperature may have altered to cause the percentage error. Furthermore, to connect the wires we used crocodile clips. We may have made a human error whilst connecting the crocodile clips to the wire as we cannot be precise in measurements using only the naked eye.

In order to improve my investigation in the future I will use clean crocodile clips and try to be more precise when connecting them to the wire so my measurements are more accurate. Also I will try to use more means in order to keep the temperature constant. To make my investigation even more accurate I will repeat it many times and compare it with other results from people who did the same investigation. Furthermore, I would use a conductor that is stiff so that is does not bend and alter the length when measured on the ruler.

   Ridwan Ibrahim, Physics Coursework, Br Ronald

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    The factors affecting the resistance of a metalic conductor.

    4 star(s)

    * I must avoid zero error by measuring the 1cm mark as the beginning of my ruler just in case the zero has been rubbed off due to daily usage. * I will switch off the apparatus when not in use to prevent overheating.

  2. Marked by a teacher

    Resistance Aim: my main aim is to investigate the factors that affect the resistance ...

    3 star(s)

    The current is the same through each resistor. The total resistance of the circuit is found by simply adding up the resistance value of the individual resistors: equivalent resistance of resistors in series is R = R1 + R2 * Resistance in parallel circuit: The results of this experiment proved

  1. Resistance of a Wire Investigation

    To remedy this, I will be adding NaHCO3 to the water. This breaks down to leave CO2 (aq). Throughout the experiment, I used constant amounts of NaHCO3, water, and elodea to ensure fair testing. I used 300ml water, adding the 0.2g NaHCO3 before the elodea, of which I used 7.5cm

  2. Discover the factors affecting resistance in a conductor.

    I collected the multimeter, the circuit board, as well as several lengths of wire ( with varying diameters), and constructed a simple circuit by placing the wire at different lengths on the circuit board. There were sockets at either and to what the wire was attached, allowing the wire to be attached to the terminals of the multimeter easily.

  1. To investigate how the length (mm) and the cross-sectional (mm2) area of a wire ...

    cross-sectional area but the same length, there will be half the number of possible collisions, and therefore have the amount of energy lost. Therefore, I can confirm that the resistance is inversely proportional to the cross-sectional area. For the mathematical reason as to why these laws of proportionality are true,

  2. The aim of this investigation is to investigate the factors affecting the resistance of ...

    Do not keep the resistance very low, as this can also burn the wire and is dangerous. * Keeping the resistance low can also result in the apparatus being damaged. * Remove loose clothing and make sure the wires are secure and do not touch them.

  1. To Investigate the Relationship between the Resistance and the Length of a Wire

    Current, A Voltage, V Resistance, ? 0.08 0.75 9.38 0.10 0.95 9.50 0.12 1.18 9.83 0.13 1.25 9.62 0.15 1.48 9.87 0.18 1.70 9.44 Mean Resistance, x = 9.61 Table 5f Result from Pilot Experiment 2: Nichrome: 60.0 cm 32swg (0.27mm)

  2. To investigate the relationship between the structure and heat provided by combustion of a ...

    We know the energy values of these bonds. Therefore we may calculate the energy released for each reaction. The process of doing this is as follows: 1. Write out a balanced formula equation for the combustion of the alcohol tested.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work