• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigate the effect of changing light intensity on the rate of photosynthesis.

Extracts from this document...

Introduction

Photosynthesis Coursework. Aim: To investigate the effect of changing light intensity on the rate of photosynthesis. Background: Photosynthesis is the manufacture by plants of carbohydrates and oxygen from carbon dioxide and water in the presence of chlorophyll with sunlight as the energy source. This chemical process occurs in the leaves, with glucose (carbohydrate) being the plants food source and oxygen the "waste" product. Photosynthesis is dependent on favourable temperature and moisture conditions as well as on the atmospheric carbon dioxide concentration. Increased levels of carbon dioxide can increase net photosynthesis in plants. The chlorophyll is used to convert light energy into chemical energy. Carbon Dioxide + Water + (energy from light) ? Glucose + oxygen 6Co2 + 6H20 + Light energy = (chlorophyll) = C6H1206 + 6H20 The factors that effect the rate of reaction are temperature light and the concentration of carbon dioxide. The temperature is important because if it is too cold, the rate of photosynthesis will be limited because the enzymes will not work properly. Light is essential because it drives the rate of reaction and carbon dioxide must be present to produce the glucose and 02 Prediction: I predict that the more intense the light, the faster photosynthesis will take place because light is needed for the reaction and there will be more input energy. When the lamp is at its highest wattage it will be giving all the light (energy) ...read more.

Middle

Repeat the procedure 3 times to make sure you have no anomalous results. Results: These are the results of the full photosynthesis investigation. Wattage Light energy (joules) Experiment 1 No. of bubbles after 6 minutes Experiment 2 No. of bubbles after 6 minutes Experiment 3 No. of bubbles after 6 minutes No. of bubbles after 6 minutes (average) No light 0 0 1 1 1 20w 72 00 3 8 5 5 40w 14 400 7 16 14 12 60w 21 600 49 44 50 48 100w 36 000 55 51 61 56 We didn't have an 80-watt light bulb so by plotting a graph we could extrapolate how much an 80-watt light bulb would affect the rate of reaction. We also worked out how much light energy was being given out. We did this using the formula: 1 watt = 1 joule of energy per second 40 watts = 40 joules per second To work out how much energy was spent it total, we times the number of watts by 60 to get one minute and then we multiplied it by 6 to work out the energy for 6 minutes. 100w x 60= 6000 = 1 min x 6 = 36 000 joules (6 mins) 60w x 60 = 3 600 = 1 min x 6 = 21 600 joules (6 mins) 40w x 60 = 2 400 = 1 min x 6 = 14 400 joules (6 mins) ...read more.

Conclusion

This could have been due to lack of attention on counting the bubbles. To improve the accuracy of counting the bubbles, we could have used a better container other than the beaker such as using test tubes to see more accurately. Measuring the light intensity could have been more accurate if we measured the distance between the light and beaker with more precision. Also breathing into the test tubes would have affected the experiment as you are letting out carbon dioxide. If we repeated the coursework then we would make sure to either not breathe by the pondweed or to wear masks. Also I could use a thermometer to check that the temperature of the water in each beaker is the same. At 80w we expect the results to be half way between 60w at 100w as that would be the likeliest thing to occur. Making sure there were no other factors affecting the rate of photosynthesis is very difficult, but if we were to make sure carbon dioxide was not interfering with the experiment, it would be a lot more accurate. To confirm that my conclusion is correct, I could repeat the experiment one more time to see if the results were similar. To continue the experiment I could use the other factors that affect the rate of photosynthesis instead of intensity of light. I would find a way to set up the experiment so I would keep the same light intensity (I would use a 40w bulb) and alter the temperature, by using water at different temperatures with the same amount of elodea. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Experiment to investigate the effect of Carbon Dioxide on the Rate of Photosynthesis

    An observation of the results illustrates that as the concentration is increased from 0.8 to 1 gram the increase in the rate of photosynthesis decreases. The reason for this may be related to the fact that carbon dioxide is no longer a limiting factor in photosynthesis.

  2. Experiment to Investigate the Effect of Temperature on the Rate of Photosynthesis in Elodea.

    After the maximum rate, the rate will start to decrease more rapidly, and the gradient of the decrease will be steeper than that of the increase. I predict that photosynthesis will no longer take place at about 500C and the graph will reach and stay at a rate of 0, even if the temperature is further increased.

  1. The aim of my experiment is to find out how light intensity affects the ...

    The Mesophyll cells have chloroplasts and this is where photosynthesis occurs. There are two kinds of Mesophyll cells - palisade Mesophyll and spongy Mesophyll. The Mesophyll cells contain tiny bodies called chloroplasts which contain green chemical called chlorophyll. Chlorophyll enables the light energy from sunlight to be converted into chemical energy for the photosynthesis reaction.

  2. Investigating the effect of temperature on the rate of photosynthesis

    Watch the stop clock well, so that the time dos not overrun. 12. Make sure temperature does not change from 15 degrees, if it does, add ice or warm water to make it to the exact temperature. The temperature needs to be monitored as it can change during the course

  1. Investigating the effect of Light Intensity on Elodea.

    * Keep the length of pondweed the same. The size of the plant and how many leaves are on it makes a difference to the number of bubbles produced (found out in preliminary exp.). The larger the number of leaves the more sunlight that they can trap and therefore the faster the rate of photosynthesis.

  2. What is the effect on the rate of respiration of yeast cells with glucose ...

    An example of this can be seen below: Table to show the amount of carbon dioxide produced in 20 minutes at 40�C using the method for the actual experiment: The mean at the two-minute interval= cm� to 1 d.p. The highest value of the three results at the two-minute interval=

  1. An experiment to investigate the effect of Light intensity on the rate of photosynthesis.

    The graph is a positive straight line because there is only the light intensity which will affect the rate of reaction. Nearer the top of the graph, the line begins to flatten off because this is where another limiting factor begins to affect the experiment.

  2. This experiment involves using a photosynthometer to investigate how temperature affects the rate of ...

    Part of the experiment involves investigating the volume of oxygen produced when the elodea specimen is placed in ice. A leaf of a plant is an organ adapted for photosynthesis. The leaf structure varies greatly and is related to the environment in which the plant is in, e.g. the artic11.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work