• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigate the factors that affects the resistance of a wire.

Extracts from this document...


Nkechi Wagbaranta

Investigation of the factors affecting the Resistance of a wire

Aim:To investigate the factors that affects the resistance of a wire.  

The variables are – The length of wire              

                             Type of wire

                             Diameter and thickness

Plan:  In the course of preliminary experiment and research, I have found out that the resistance of a wire can be affected by the following factors

  • Diameter of wire – The resistance of a wire increases as its diameter increases.

      This happens because the increase in diameter brings about more space for the           electrons to flow through and a greater chance of collisions as the electrons flow.

  • Length of wire - A wire with a longer length would have to travel a longer distance, therefore the resistance would be greater because there would be an increase in the amount of collisions of the electrons and atoms causing the flowing electrons to slow down.
  • Thickness of the wire – Thick wires have high density.  A wire with a high density would have a high resistance.  This would happen because the flow of electrons would be slowed down since a wire with a high density has more atoms in a smaller space in addition to fewer gaps for the electrons to flow through.
  • Temperature – An increase in temperature would cause the metal ions in the wire will vibrate more bringing about more chance on an electron colliding with a metal ion and therefore increase in resistance.
  • Material of wire – Some wires how lots of atoms while other wires have few atoms.  A wire with many atoms would have a low resistance because it because it has a high area for the electron to pass through there for there would be less chance of electrons colliding with the nucleus and the flow of electrons being slowed down.
...read more.


The nicrome wire is a conductor because like other metals, it has free electrons, which carry negative charge by jumping alongside the atoms that are arranged as a lattice structure in the wire.

         Thus if the length of the nicrome wire were increased the distance that the electrons would have to travel as well as the collision would be greater since the electrons would have to jump along more atoms while they flow to the positive cell of the circuit therefore causing the resistance to increase due to the boost of friction and slowdown caused by the collision between the electrons and atoms.


Power Pack – (2.2V DC) For power supply

Voltmeter – To measure the voltage in the circuit

Ammeter – To measure the current of the circuit

A nicrome wire of length more than 50 cm

Six wires with crocodile clips – To complete the circuit

Micrometer – To record the diameter of the wire

Wheat stone bridge – To measure and connect the wire

Variable resistor – To allow me change voltage if I need to


  1. Firstly I measured different parts of the wire using a micrometer.  Then I recorded the different diameters that I got and calculated the average diameter, which was 0.56mm.
  2. Then I positioned my nicrome wire on the wheat stone bridge.
...read more.


                 I think that repeating my experiment more times.  Doing this would have given me a wider range of readings, which would have made my average more accurate.  

               If I could repeat this experiment I would try and correct all of the above circumstances, which made my some of my results strange.  I would also use a very much longer length of wire because I would like to see if the resistance of a wire would increase dramatically with a longer length of wire.

I would also like to change my dependent variable to the type of wire in order to see how it would affect the resistance of the wire.  Expect that the resistance would differ according to the type of wire depending on the number of atoms the wire has and how good a conductor the wire is.

 I think a think a thicker type of wire would have more resistance than a thinner one because a thicker wire would have more atoms and therefore more neutrons to collide with the electrons consequently obstruct  and slow down the free flow of electrons.

Resistance and wires coursework

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    The factors affecting the resistance of a metalic conductor.

    4 star(s)

    DC supply * Starting with a length of wire that was 50 cm [as opposed to using a 30cm wire as I had planned] long, I connected this with crocodile clips at each end of the wire into the circuit in the place as shown in the circuit diagram.

  2. Find out what affects the resistance of a wire.

    The aim of this is to finally decide on some details of the method and learn to use new equipment. The first problem I faced was which wire should I use in my practical. So in my preliminary work I tested two different wires and afterwards decided on which one was the most suitable.

  1. Resistance of a Wire Investigation

    Plant- Different species plants have different photosynthetic rates due to the different leaf structures of the plants. Even plants of the same species may have slightly different rates of photosynthesis since there may be more or less chlorophyll in the leaves to absorb light.

  2. To investigate the factors affecting current in a wire.

    Nickel Chrome wire with a thickness of 32SWG - Rheostat - Power Pack - 6 connecting leads - 2 crocodile clips - Voltmeter - A 0 to 10 amp ammeter 1) The circuit will be set up as shown in the diagram above.

  1. Investigating how the length of a Wire affects its resistance.

    used in a small room as the wire could touch itself and cause the length tested to be far shorter. This means that doing the experiment with more lengths would not really be practical. The other choice would be to increase the number of repeats done.

  2. Investigate one or more factors affecting the resistance of metal wires

    Note that I did not have to measure out the diameter of the wire using the Micrometer screw gauge since it was already done for us. Measurements: * The length of wire (L) between the crocodile clips was measured using the meter ruler.

  1. Discover the factors affecting resistance in a conductor.

    I can predict a result to discover how its length affects the resistance of carbon putty. I predict that as I shorten the length of the putty, the resistance will decrease. I can confirm this prediction because the scientific theory written states the following.

  2. Investigate how mass affects the diameter of an impact crater.

    Preliminary work will also allow me to identity any arising problems at an early stage and determine the required apparatus needed to complete the experiment. Preliminary results: Varying height HEIGHT (CM) SURFACE MEDIUM MASS (G) CRATER SIZE (MM) 1 2 3 Mean 20 Fine aquarium gravel Golf ball (42)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work