• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  • Level: GCSE
  • Subject: Science
  • Document length: 2067 words

Investigate the factors which affect the period of one swing (oscillation) of a simple pendulum.

Extracts from this document...


Pendulum Aim: To investigate the factors which affect the period of one swing (oscillation) of a simple pendulum. The factors I will use are length of the string, and angle that the bob is released from. Hypothesis: 1. Length of string I think that the length of the string directly affects the period of one oscillation. The mathematical formula used to describe the period of the pendulum is: T= 2??V/g T is the period (time for one swing - seconds) is the length of the pendulum (metres) g is the acceleration dues to gravity. (N/KG) (Length) is in the formula, clearly indicating that it is a factor which will directly affect the period of time. To see whether the time period will increase or decrease when the length is increased, I will substitute the formula for numbers to see the result. Length 0.3, g-force = 9.8N/KG T= 2? V/g T = 2??V0.3/9.8 T = 1.009s Length 0.4, g-force = 9.8N/KG T= 2? V/g T = 2??V0.4/9.8 T = 1.269s The calculations above show that when the length of the pendulum is 0.3m, the time for one oscillation is 1.009s. ...read more.


The statement ? T can be justified by taking values from the graph, for example when the length of the string is 5cm T= 0.481 and when the length is doubled to 10cm T= 0.651, which shows T is almost doubled. The table below shows actual results compared to the theoretical by working out the percentage error by this formula, percentage error= (actual error (actual result- theoretical results)/ exact value (theoretical results)) x 100: Length of string (cm) Theoretical prediction Actual results Percentage error 5 0.449 0.481 7% 10 0.635 0.651 2.5% 15 0.777 0.862 11% 20 0.898 0.877 2% 25 1.004 1.014 1% 30 1.099 1.129 2% 35 1.187 1.221 5% 40 1.269 1.267 0.2% 45 1.345 1.328 1% 50 1.419 1.489 5% My average percentage error is 3.6% which suggests that our results are fairly accurate. Experiment 2 By looking at the results obtained from my graph I found that the angle of amplitude did affect the period of oscillation, however in a very slow rate. Also I found some anomalous results in this experiment which could have been because we did not follow one of our control variables. ...read more.


at the table I can now base my results on a sound prediction and say that the stronger the gravitational field strength is of a planet the faster the time period is of one oscillation and the weaker the gravitational field strength the slower the time period of one oscillation. o I cannot continue this investigation, since my school does not have the resources for me to experiment on other planets. This controlled-falling system is a weight (bob) suspended by a string from a fixed point so that it can swing freely under the influence of gravity. If the bob is pushed or pulled sideways, it can't move just horizontally, but has to move on the circle whose radius is the length of the supporting string. It has to move upward from where it started as well as sideways. If the bob is now let go, it falls because gravity is pulling it back down. It can't fall straight down, but has to follow the circular path defined by its support. This is "controlled falling": the path is always the same, it can be reproduced time after time, and variations in the set-up can be used to test their effect on the falling behaviour. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a star student thought of this essay

3 star(s)

Response to the question

This is a good essay that ties experiment and theory together quite well. The student has answered the question of what factors affect the time period of an oscillation well. He has at first looked at his theory to determine ...

Read full review

Response to the question

This is a good essay that ties experiment and theory together quite well. The student has answered the question of what factors affect the time period of an oscillation well. He has at first looked at his theory to determine that length will likely determine the time period, and he has also used his initiative to think that angle and mass may affect the time period even though the theory says they do not. He has made a prediction based on his theory and on his intuition, however I would of recommended rather than just going on intuition he should of checked his theory to see what the theory predicts would happen in terms of increase in mass and increase in angle.

Level of analysis

The student clearly lays out his method which I would recommend always doing as it is best to know what you are doing before you do it, you don't want to be confused as to what to do when you get to the experiment. He calculates all his errors which is very helpful as it both adds depth to the coursework and helps to stop you from making incorrect conclusions, as you can see if the results could be due to errors. However he works out the error by comparing it to how the theory predicts the result should be, you should not do this. Make sure to calculate errors the regular way. He uses theory to calculate why the speed is not determined by the mass of the bob, which adds a lot of depth. However it could have been done easier by realise that the force is determined by the mass, but so is the acceleration, therefore since F=ma, since F is the mass multiplied by another value, you can put the equation as mk=ma, and the mas cancel. You could go into more depth and determine what determines k.

Quality of writing

The student's grammar and spelling is fine and so is his layout. However he should of made repeats and calculated an average to increase reliability, and he should of made a table for each of his experiments. He could of also plotted a graph to determine how his variables are proportional to each other.

Did you find this review helpful? Join our team of reviewers and help other students learn

Reviewed by jackhli 28/02/2012

Read less
Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The Simple Pendulum Experiment

    4 star(s)

    When the person catches the ruler, we can read off the time that it took that person to catch the ruler, therefore determining the reaction time of the person. I will carry out this experiment 3 times and take an average of the results to determine my reaction speed.

  2. Marked by a teacher

    The purpose of this experiment is to see what factors affect the period of ...

    4 star(s)

    2. Laboratory procedures should be followed. RESULTS *The mass of the bob for these experiments is (35g) Length of string Swing size 25cm Time taken for 10 oscillations (sec) 60 25 15 60 25 15 50 25 14 50 25 14 40 25 13 40 25 13 30 25 12 30 25 12 20 25 11

  1. Peer reviewed

    length of a simple pendulum affects the time

    4 star(s)

    As the cotton passes the point the stopwatch is started and counting is started at "0". The pendulum will swing to one side, then back through the centre and to the other side. When it passes the centre again "1" is counted for the first complete swing.

  2. Determination of the acceleration due to gravity using a simple pendulum.

    Time20 = 0.5 + 0.005 = 0.505s -Absolute Error in Time2 = ((Absolute Error in Time20/20) x 2) / Value x 100% Percentage Error in Time2 = Absolute Error in Time2/Length x 100% Percentage Error in Gradient = Percentage Error in Time2 + Percentage Error in Length Percentage Error in

  1. Physics Lab - Conservation of momentum

    = (97 / 100)m / 3.67s = 0.264 m/s Momentum before collision = mass x initial velocity = (496.29 / 1000) kg x -0.423m/s = -0.209 kgm/s Momentum after collision = mass x final velocity = (496.29 / 1000) kg x 0.264m/s = 0.131 kgm/s Data table #4, showing the change in momentum and average results from the 2 methods.

  2. An Experiment Using a Pendulum to Find the Acceleration due to Gravity.

    the ground on a high-rise building will also have a different value for 'g'. You also have to take into account gravitational pull from the sun and moon or even other smaller bodies of mass like say the walls in the room the experiment is undertaken.

  1. In this experiment I aim to find out how the force and mass affect ...

    Repeat from step 4 twice more so you end up with three results for the same height then continue onto step 9 9. Add all these results together and divide the answer by three to obtain the average. 10. Record this average in the table 11.

  2. Crater Experiment

    positive correlation with my results which relates back to the prediction and theory of gravity (the higher I drop the marble the bigger the effect of gravity and kinetic energy therefore causing a bigger crater). One thing I can predict with my graph is that there is a limit to

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work