• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10

Investigate the factors which affect the resistance of a wire.

Extracts from this document...

Introduction

Physics Coursework-Resistance Investigation:

Aim:

To investigate the factors which affect the resistance of a wire.

Key Equations:

To work out the resistance of a wire you use the formula:

R = V/I

Where R is the resistance, V is the voltage and I is the current flow.

Another way to work out the resistance of a piece of wire (possibly if you are investigating the cross section area of the wire) you use the formula:

R = p L/A

Where p is the resistivity of the wire, R is the resistance of the wire L is the length of the wire and A is the cross section area of the wire.

Introduction and background information:

The definition of resistance is prevention of an electric current by means of electron flow and ions. Current is measured in amps and is the flow of charge in an electrical circuit and this is moved round the circuit by voltage. Voltage is the same as potential difference and is measured in volts. Resistance is measured in Ohms and is the calculated difference between the ends of a conductor, divided by the current flowing through the conductor.

The relationship between both voltage and current is explained by Ohm’s Law:

The current through a device is directly proportional to the potential difference (voltage) across it if the temperature remains constant. Showing that if there is a greater resistance there will also be a greater voltage to push the same amount of charge through the wire.

If you have to put 1 Volt across something to pass 1 Amp through it, then it must have a resistance of 1 Ohm (Ω the Greek letter Omega is the symbol of resistance, The Ohm).

Electricity is passed through a metal by the movement of free electrons.

...read more.

Middle

The resistance of different materials determines how much energy is need to push the charge through the device. If there are lots of ions (vibrating with energy) in the way, the easiest route for the electrons to take between the ions is blocked. If no current is allowed through the material is then called an insulator.

From this I can predict if I change the material the wire is made from the resistance of the wire will also change.

The factor that I have chosen to investigate is; the length of the wire. I have chosen to investigate this because I feel it will give the best results and affect the resistance of the wire evenly as discovered by the preliminary results.

If I increase length of the wire the resistance of the wire will also increase.

If I decrease length of the wire the resistance of the wire will also decrease.

Fair test:

It is important to do a fair test because otherwise your results may vary or be inaccurate. A fair test is an experiment were you only change one area or measurement that you are going take e.g. the length of the wire. The other areas of the experiment should stay constant and not change.

The factor I have decided to investigate I think will produce the fairest and best results possible to me to back up my prediction.

When I do my experiment I will only change the length of the wire used. To keep it fair I will use the same: wire as the wires have slightly different cross section areas along them and made are from different materials we used a 36 standard wire gauge and we measured the average cross section area being 0.211mm ranging from 0.208 to 0.

...read more.

Conclusion

The predictions were supported by both the scientific knowledge and results and have been proven correct. Overall I feel the results created a definite trend and backed up my predictions. This conclusion will work for these results but possibly not for all. More results would need to be taken to prove the predictions always work.

Evaluation:

I feel the experiment went reasonably well and the results backed up and agreed with the prediction and the conclusion. If I was to repeat the experiment I would take more results at smaller increments along the wire to reduce in-accuracy as the cross section area of the wire changes along its length. This would prove definitely the predictions were correct and that the results were the same when using different lengths of wire. I could also see if there is a constant change in resistance compared to length when there is a greater voltage supplied to the circuit for example 8V.

If I were to do experiment again I would take more results and also take more accurate readings. I could do this by using better equipment for example: measuring the temperature of the wire so that there was very little change in this. I could start the experiment each time with the wire being at a constant temperature to make the experiment more precise. We did not have enough equipment to do this in the laboratory and so had to rely on the fact that temperature wouldn’t change the results too greatly.

Overall I think the experiment was very successful and clearly proved my predictions. If you increase the length of a wire, the resistance also increases. The resistance of a wire is directly proportional to the length of the wire.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    To investigate how the resistance, R, of a length of wire, l, changes with ...

    4 star(s)

    When the constantan wire is being tested, the length and the diameter of the wires should be constant. Prediction Taking the content on the previous pages into account, I think that the electrical resistance of a wire would be expected to be greater for a longer wire, less for a

  2. Marked by a teacher

    Resistance Aim: my main aim is to investigate the factors that affect the resistance ...

    3 star(s)

    and a larger one (A). Notice that the electrons seem to be moving at the same speed in each one but there are many more electrons in the larger wire. This results in a larger current which leads us to say that the resistance is less in a wire with a larger cross sectional area.

  1. An in Investigation into the Resistance of a Wire.

    0.19 0.11 1.73 0.35 0.21 1.67 0.70 0.41 1.71 1.33 0.78 1.71 10 0.08 0.09 0.89 0.91 (0.9) 0.12 0.13 0.92 0.14 0.14 0.93 0.29 0.32 0.91 1.06 1.16 0.91 In the wire E28 Length/cm Voltage/volts (V) Current/amps (A) V/I=R (?) Resistance/ohms Average Resistance/ohms 100 0.32 0.07 4.57 4.57 (4.6)

  2. The aim of this investigation is to investigate the factors affecting the resistance of ...

    125 40 2 1.7 Constantan 26 125 40 3 1.7 1.7 2.4 Constantan 26 125 50 1 1.6 Constantan 26 125 50 2 1.6 Constantan 26 125 50 3 1.6 1.6 2.5 Constantan 26 125 60 1 1.6 Constantan 26 125 60 2 1.5 Constantan 26 125 60 3 1.5

  1. Discover the factors affecting resistance in a conductor.

    no loose wires) and a low power setting was used on the power pack. The scalpel was used with extreme care, making sure that my fingers were well away whilst cutting through the carbon putty. Using this equipment, we measured the length of the carbon putty (using the ruler), and

  2. Investigate how the cross section of a wire affects the resistance in a circuit.

    Experiment 1 Aim- To investigate how the cross section of the wire affects its resistance Apparatus- Power Supply- Power source for circuit Wires- To connect the whole circuit together Ammeter- To measure the current Voltmeter- To measure the voltage Resistor- Wires (The resistance caused when the current goes through it)

  1. Resistance of a Wire Investigation

    1.33 40 0.60 0.32 1.88 50 0.63 0.26 2.42 60 0.64 0.23 2.78 70 0.65 0.20 3.25 80 0.66 0.18 3.67 90 0.67 0.16 4.19 100 0.68 0.15 4.53 At 5V: Length (cm) Voltage (V) Current (A) Resistance (W) (to 2 d.p.)

  2. Investigating how the length of a Wire affects its resistance.

    This is the simplest explanation as to why the points are not always on the line of best fit The scientific theory explaining the results are 1. Ohm's law that relates resistance to current and voltage enabling us to calculate resistance; 2.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work