• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigate the relationship between pulling back an elastic band and how much force it exerts.

Extracts from this document...

Introduction

Simon Beard 11Y

Investigating forces

Plan:

        I am going to investigate the relationship between pulling back an elastic band and how much force it exerts.

Equipment:

I am going to need:

  • An elastic band
  • A margarine tub
  • A 100g weight
  • A stool
  • A table
  • A Newton meter

Diagrams:

Fair test:

        The factors that could affect my experiment are the stool, the elastic band, the margarine tub, the weight and the desk.

I will make sure the stool is the same as some stools may have been made a different size or may have been bent out of shape. Both of these factors could add more tension to the elastic band or could make it slacker, these would affect my experiment as the amount of strain potential energy would be different.

I will use the same elastic band as different elastic bands would have different elasticity. This would affect my experiment, as if you pulled an elastic band back 10cm, it would have more strain potential energy then a slacker elastic band pulled back 10cm.

I will use the same margarine tub throughout the experiment as a different tub might be a different weight and a different size. This would affect my experiment because the heavier the tub, the less distance it would travel. Also, if the tub rotates while moving, I will do that test again.

...read more.

Middle

Distance =         the distance elastic band is pulled back or the distance the tub travels

For example:

Elastic band:                Work        =        force                x        distance

                        Work        =        2N                x        7cm

                        Work        =        2N                x        0.07m

                        Work        =        0.14J

Margarine tub:        0.14J        =        1N (100g)        x        d (distance)

                        d         =        0.14J                /        1N (100g)

                        d        =        0.14m

                        d        =        14cm

Here is my table of predictions:

Force transferred to tub (N)

Distance elastic band pulled back (cm)

Predicted distance of travel (cm)

2

7

14

3

11

33

4

15

60

5

18

90

6

21.3

127.8

Here is a graph of my table of predictions:

image03.png

This graph contradicts the one I drew earlier as this one obviously curves. If my prediction of Force  Distance is correct, this graph should be a straight line. However, looking at my prediction table I have noticed that the distance travelled by the margarine tub is proportional to the product of the force applied to the elastic band and the distance elastic band is pulled back. I know that the product of the force applied to the elastic band and the distance the elastic band is pulled back is the amount of energy stored in the elastic band.

...read more.

Conclusion

The second half of my prediction is correct and I successfully managed to explain what would happen using my knowledge of forces and some formulas.

Evaluation:

        I think my experiment went extremely well as everything went to plan and I believe that my results were fairly reliable and quite accurate. I managed to notice that I had two anomalous results

The method worked well because the experiment was completed quickly and smoothly. It produced reliable and accurate results all round apart from two which I believe to be down to be human error.

I have circled the anomalous results on my graphs. As all my other results seem to be so close to my line I can only put this down to human error.

Here are some ways in which I could have improved the experiment:

  • Instead of using a mechanical Newton meter I could have used a more reliable electronic one.
  • Instead of using a meter ruler by the side of the stool, I could have had the measurements drawn or printed on the tabled or on a long sheet of paper laid underneath the stool and where the tub is going to go. This would have improved my measurements as I would not have lost accuracy using the ruler and the set square.

If I was to do this experiment again I would take more measurements to put further backing behind my prediction. I would take measurements from 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6N. I would also involve the two improvements stated above.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    To investigate the factors that affect the stopping distance of a catapulted margarine tub. ...

    4 star(s)

    down and forwards, it would pull it down and backwards, and work against the KE. I will collect three sets of results for each mass of tub that I use, so that I can find an average, and see if there are any anomalous results.

  2. In this experiment I aim to find out how the force and mass affect ...

    The usage of books means we can increase the height by any amount because some books are thicker than others are. We can get the height of the ramp at the start line almost exactly on the said measurement by simply moving the pile of books forwards or backwards fractionally.

  1. Approximate Stopping Distances

    What is really needed to tackle the root of the problem is a change in driving culture, in which drivers are more aware of their responsibilities behind the wheel. That can only be done through education perhaps as part of the driving test, or even by talking to people who are going to become drivers in schools.

  2. Acceleration, Force and Mass

    Measured in Newtons. 1.The mass of the trolley, acting as the mass in the formula F = ma. Measured in grams. 1. The acceleration of the trolley over the course. Measured in metres /second´┐Ż.

  1. To see how the distance, a weighted margarine tub travels, changes as the distance ...

    * The position I pull the tub against the elastic band. To try and control these things I will try to put the tub in the same position on the elastic band and keep the experiment on the same desk.

  2. Rubber Band Investigation

    T he value of k depends not only on the kind of elastic material under consideration but also on its dimensions and shape. At relatively large values of applied force, the deformation of the elastic material is often larger than expected on the basis of Hooke's law, even though the

  1. Potential energy in an elastic band that is transformed into kinetic energy and the ...

    5.9 7.4 4.6 5.97 5.0 21.4 50.4 49.8 50.5 50.2 11.7 15.9 13.3 13.63 6.0 23.6 62.7 62.9 58.0 61.2 5.6 12.1 13.8 10.50 Force Applied (N) Total distance (cm) Average 1 2 3 1 13.2 13.4 12.7 13.11 2 15.3 15.5 15.7 15.50 3 30.2 31.0 30.7 30.63 4

  2. Controlled Assesment Experiment - The extension of a rubber band depends on the force ...

    Below the elastic limit, we say that the spring is showing "elastic behaviour": the extension is proportional to the force, and it'll go back to its original length when we remove the force. Beyond the elastic limit, we say that it shows "plastic behaviour".

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work