• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

Investigate the water potential of a potato tuber.

Extracts from this document...


My aim in this investigation is investigate the water potential of a potato tuber. This investigation needs a lot of planning and prediction with the use of scientific knowledge involving preliminary experiments, which will guide me for the main experiment to be successful and for it to produce concise and accurate results to prove the hypothesis, explained in the prediction. The main theory used in this experiment is the theory of osmosis, which is the passage of water from a region of high water concentration through a semi-permeable membrane to a region of low water concentration (http://www.purchon.com/biology/osmosis.htm). Osmosis controls the exchange of molecules through the semi permeable membrane. It allows small molecules like oxygen, water, carbon dioxide, ammonia, glucose, amino acids, etc. to pass through. Cell membranes will not allow larger molecules like sucrose, starch, protein, etc. to pass through. If the solution surrounding the cell has a higher water concentration than the cell (a very dilute solution) the cell will gain water by osmosis and vice versa. A key feature of osmosis is that only water molecules move across the membrane to bring the two solutions to and equilibrium. This equilibrium is reached when the water potential in one region is the same as the other region. Water potential is the chemical potential (i.e. free energy per mole) of water in plants. Water moves within plants from regions of high water potential to regions of lower water potential, in other word down a water potential gradient. It is this tendency to move which is called water potential (Cambridge Advanced Sciences Biology 1, Mary Jones et al, 2000). It is affected by two factors, which are solute potential (?s) and pressure potential (?p). The solute potential is a measure of the number of dissolved particles in water, for example the amount of dissolved sugar or salt. In pure water the solute potential is zero because there are no solute molecules at all. ...read more.


error because it will allow osmosis to occur more or less so this will affect the water potential in those few cells (independent variable) I will leave the all the tubers in for sufficient time, that is, 24 hours and will note the exact of putting the cylinders in solution and taking them out. (Independent variable) Before completing the actual experiment I did a preliminary experiment similar to what my actual experiment be like but instead I chose to use an onion. In this experiment the aim was to observe the process of plasmolysis and to record the plasmolysed state in the epidermal cells of the onion. If a plant cell is in contact with a hyper tonic solution, that is a solution that has a higher solute concentration than the cell contents, water leaves the cell by osmosis via the cell membrane. Water is lost first from the cytoplasm and then the sap vacuole through the tonoplast. The protoplast the living part of the cell (cytoplasm and the nucleus) shrinks and eventually pulls away form the cell wall - this process is called plasmolysis, and the cell is said to be plasmolysed. In the experiment I used 6 different concentrations of sucrose solution varying from 0.1 molar to 1.0 molar shown in the table below: Ratio of water Ratio of sucrose Molarity of sucrose solution 8 2 0 7 3 0.3 6 4 0.4 3 7 0.7 2 8 0.8 0 10 1.0 I removed a strip of epidermis from the inner surface of one of the fleshy storage leaves of the onion bulb. First slitting it with a scalpel, and tearing back the single layer of cells with forceps can remove the epidermis. I cut up this epidermis into seven 5 x 5 mm (approximately) pieces. I put each of these in the different concentrations and waited for about roughly 20 minutes. ...read more.


This shows that I had carried out the experiment fairly and accurately, although they are not all exactly fitted on the line of best fit, this small difference may be due to many reasons, as it affected all the different concentration From this graph it is possible to work out the point at which it has cut the x-axis accurately using the equation of the line. At this point incipient plasmolysis occurs, the pressure potential is zero. From the use of excel I have drawn a trend line which is more accurate then the one that I have done previously by hand (-74.429 being the gradient and 27.381 being the y-intercept following the rules of mathematic where y = mx +c). If it is not accurate it is not possible to see where the line cuts the x - axis. Below I have worked out this point: The equation of the line is Y = -74.429x + 27.381 At this point y = 0 ? 0 = -74.429x + 27.381 -27.381 = -74.429x x = -27.381/-74.429 = 0.367880799 This is the molarity of sucrose solution at which point incipient plasmolysis occurs. This is a very accurate number because it is up to 9 decimal places, which is not necessary but is very accurate. On my and drawn graph you can clearly see that this same point is at 0. 38, which is not accurately because the line of best fit has been drawn approximately. As we found out from the experiment even small changes in concentration can have an effect in the percentage change in mass. Here is a table of solute potentials of sucrose solutions (at 20?C). This will help me work out the water potential Concentration of sucrose solution (Molarity) Solute potential Kpa 0.05 -130 0.10 -260 0.15 -410 0.20 -540 0.25 -680 0.30 -820 0.35 -970 0.40 -1120 0.45 -1280 0.50 -1450 0.55 -1620 0.60 -1800 0.65 -1980 0.70 -2180 0.75 -2370 0.80 -2580 0.85 -2790 0.90 -3010 0.95 -3250 1. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Life Processes & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Life Processes & Cells essays

  1. Marked by a teacher

    To determine the water potential of a potato tuber cell using varying salt solution.

    5 star(s)

    Solute potential is always in negative numbers as the only positive solute potential is that of pure water and that does not include any solutes. Its symbol is ?s. Pressure potential has the symbol ?p. When water enters plant cells by osmosis, pressure can build up inside the cell, this increases the pressure potential.

  2. Marked by a teacher

    How does the concentration of a sucrose solution affect the rate of Osmosis in ...

    5 star(s)

    The highest concentration I can do before the solution becomes saturated is 20% sucrose. I decided that the way in which I would get the most accurate and well spread out results would be to do ranges of equal intervals in between so I chose to do 0% sucrose, 5%, 10%, 15%, and 20%.

  1. Marked by a teacher

    To investigate how varying the concentration of sucrose solutions affects the rate of osmosis ...

    3 star(s)

    I used a very sensitive weighing balance to denote the masses of the potato cylinders both before and after the experiment. I reweighed each cylinder to ensure that I have denoted the correct reading. 7. I ensured that the potato cylinders were completely immersed in the solutions.

  2. Marked by a teacher

    Pectinase Lab

    3 star(s)

    * The human body generally takes 3 - 4 hours to digest its food and 10 minutes would not give the petinase ample amount of time to act on the apple juice. Thus we chose to alter the time from 10 minutes to 20 minutes, so that the pectinase had enough time to act on the apple juice.

  1. Aim To determine the water potential of a potato tuber cell

    across a semi permeable membrane. Although the tuber will be heavier, it won't get significantly heavier than that of the other tubers. This is due to plasmolysis occurring in the cells of the potato, allowing no more water to pass into it, protecting the cells from bursting.

  2. Investigating the cellular water potential of potato cells.

    p =0), so the water potential of the solution is equal to the solute potential of the solution. At equilibrium, the water potential of the tissue is equal to the water potential of the solution. Before carrying out the real investigation I needed to look at some variables that needed

  1. Investigation To Find the concentration of sucrose solution that has the same "water potential" ...

    the same osmotic strength as the cells, they are in a state where there is no change in mass. Variables Non-Variables to be considered 1) Solution concentration 2) Solution volume 3) Duration of experiment 4) Temperature To create a fair test certain aspects of the experiment will have to be kept the same whilst one key variable is changed.

  2. An Investigation to determine the Water potential of Potato cells.

    This essay from www.coursework.info Therefore when the potato is placed in a solution with higher water potential the cells will increase in size and mass as the net flow of osmosis is into the cells. However when the potato is placed in a solution with lower water potential the cells

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work