• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9

Investigate whether the concentration of acid effects the speed of the weathering of limestone

Extracts from this document...

Introduction

Purpose of Experiment This experiment is to investigate whether the concentration of acid effects the speed of the weathering of limestone. Plan In this experiment, we will subject a certain amount of limestone to different concentrations of acid. We will analyse the time taken to emit a certain quantity of gas in order to discover the rate of reaction. Pre-trial run We found that the pre-trial run was very helpful as it enabled us to determine the amount of substances needed to make our experiment successful. We tested the highest and lowest measures of acid in order to investigate the extremities. We found that the lowest acid measure took a lengthy amount of time to complete so we decided that we will swirl the experiments to speed them up. The pre-trial run was also helpful because it allowed us to compare results with other groups to judge whether we were correct. We also made sure we used the same quantities as other groups so that we could share results. It also helped us resolve any problems or queries we had and was good practice to make sure we do not ruin the actual experiment. The final thing it helped us decide on was that we should measure the time in seconds not minutes as to have more accurate results which will be easier to round up and plot on our graph later. Safety During this experiment, I will make sure that I do not rush about in the laboratory and cause an accident. ...read more.

Middle

This reference was written by Jim Winkley. Reference 2 states that acid rain is often carried a long distance from its source. This means that places where acid rain is frequent may not be to blame for it. This also explains how forests and lakes become contaminated. It also states that acid rain is not always in the form of rain, but it can also be snow or fog. This means that the correct term is actually 'acid deposition.' This reference was from Microsoft Encarta encyclopaedia 2001 and can be found under ''Acid Rain Damage.'' Reference 3 is regarding the attempts to clean up acid rain. A ventri air scrubber removes polluting particles from gas emissions. If this is used to treat fossil fuel smoke then it could considerably reduce acid rain. This reference was found on Microsoft Encarta encyclopaedia 2001 and can be found under the section ''Anatomy of an Air Scrubber.'' Reference 4 says that acid rain is caused by industrial emissions mixing with atmospheric moisture. It also says that only recently has the problem become severe and widespread enough to spark international concern. This source was from the ''Air Pollution and Acid Rain'' section of Microsoft Encarta encyclopaedia 2001. Reference 5 is a diagram of the formation of acid rain and its effects. It shows that acid rain begins in factories, which are quite often burning fossil fuels. It then forms and artificial cloud as the pollutant particles mix with moisture. ...read more.

Conclusion

This means that acid that is more dilute produces a slower reaction. I found that my prediction was correct, I predicted the rate to be slower when the acid was more dilute. My results prove this because the average time for 100% acid was 14. 33 seconds and the average time for 20% was 83. 12 seconds. All of the other results fitted quite evenly in between these two. I found this because when there were only acid particles (100%) reacting with limestone particles, many more collisions took place. This produced a much faster rate. When there were only 20% acid particles there were 20% less collisions. I discovered that the rate of reaction for 100% acid was 5. 8 times faster than for 20%. In my prediction, I had said it would be five times faster but I had not taken into account the fact that it would slow towards the end of the trial. I also found that the temperature had no visible effect because our results were varied on each day. For example one day one when trials one and three took place the results for 20% were 50. 97 and 105. 87. Then on day 2 when trials two and four took place the 20% results were 66. 70 and 108. 93. These results are very varied and prove that the temperature change was not enough to make any impact. My experiment shows that the effect of acid on limestone is greater when there is more acid and therefore proves that is the amount of pollutants in the air were reduced then the effect of acid rain would be less. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Concentration of Vinegar

    I think that by presenting my results in a table it is visually easy to see what results I got for different things and the different attempts. Analysis I then proceeded to find the molarity of each of the vinegars using the average values I had obtained from the experiment.

  2. Investigating the effects of varying pH levels on the germination of cress seeds

    I then made the 1% concentrated solution; I first measured 360cm� of H2O using the 100cm� measuring cylinder labelled 'Water', and put this into the corresponding bottle labelled '1%'. Using one of the remaining two 100cm� measuring cylinders I measured 40cm� of the 10% concentrated solution which I added to the bottle, and shook gently to mix the solution.

  1. How much Iron (II) in 100 grams of Spinach Oleracea?

    to react with the 20cm3 of Oxalic Acid (aq), and I was running out of Potassium Manganate (VII) (aq) in the 50 cm3 burette. For this reason I thought it would be necessary to lower the volume of Oxalic Acid (aq)

  2. Investigating the effects of changing the concentration of different solutions on the refractive index ...

    First, set the microscope to some where in the scale as starting point. As the microscope doesn't have a scale of its own, I made one up using graph paper. The microscope has to return back to where it started every time before adjusting it.

  1. The effect of Acid Rain on Seed Germination.

    The seeds had not produced any form of jelly and so had simply just dried out. Experiment 3: These cress seeds germinated well and grew to an approximate length of 60mm (length of root included), and eleven of the shoots and developed little leaves called cotyledon.

  2. Investigating the Effects of Increasing Copper Sulphate Solution Concentrations on the Germination of Cress ...

    and for the hydrolysis of the insoluble storage material or activation of the enzymes for food mobilisation. The germination also depends on the activation stage which is the mobilisation of foods such as starch proteins and fats. This occurs through enzymes (amylase, maltase, peptidases, lipase)

  1. Formation and Effects of Acid Rain.

    Nitrogen oxides are generated mostly from cars and since many people had cars to commute a lot was produced. The UK is an Economically Developed Country (MEDc) and therefore has access to a wide range of technologies, which too, added to the formation of acid rain.

  2. What effects the rate of a reaction

    Not an all collisions will results in a reaction. - The more concentrated the reactants, the greater the rate of reaction will be. This is because increasing the concentration of the reactants increases the number of collisions between particles, therefore, increases the rate of reaction. - The increase in temperature produces an increase in the rate of reaction.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work