• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigate whether voltage affects the rate of electrolysis?

Extracts from this document...

Introduction

Coursework By Duncan Shears 15/09/02 Aim: To investigate whether voltage affects the rate of electrolysis? Independent variables: The voltage is going to be increased to see if it affects the rate of electrolysis and how much copper is transferred from the anode to the cathode. I will note down if, the rate of electrolysis grows with the increase in voltage and if so how much. Dependent variables: At each voltage I am noting down how quickly electrolysis occurs. To get results we must measure how much the cathode gains in weight and how much the anode loses. We must measure the weight of the electrodes before the experiment and after to see the increases in weight at the cathode and decrease at the anode Controlled variables: To ensure a fair test, the amount of copper sulphate must be kept the same. The time the experiment is done for must be kept the same for each voltage. I must use the same anode and cathode throughout the experiment. ...read more.

Middle

the negative side of the power pack, this is now your * The cathode should increase in weight as copper is added to it, and the Anode should decrease in weight as copper is taken from it. * Now switch the system on and the anode should dissolve because its atoms give up electrons to form ions: Cu Cu2+ 2e-, start the timer as soon as you turn on the current. The cathode should collect copper and the anode should lose it through Electrolysis. * After 5 minutes stop the timer and turn off the power supply and dry with the hair dryer and weigh the anode and cathode. * We will do this twice for each size voltage, 2, 4, 6, 8, and 12, to get an average until we have a set of results. Safety: Lab coats should also be worn as to not dye or get and liquid on your clothes. ...read more.

Conclusion

Also you can see from the second one that the weight of the anode decreased through the experiment as the metal was taken from the anode and added to the cathode. From 1.23 to 0.52 there is a clear decrease in weight on the anode, and an increase on the cathode. Conclusion: In conclusion my results have proved my prediction, as the voltage increased the faster electrolysis occurs, to be true. As the cathode grew in weight and the anode shrank in weight, which proves that electrolysis did actually occur. Evaluation: The results that I collected from this experiment I may have had one anomalous result, which could have been a result of a concentration error or timing the experiment not for the 5-minute period. I think I used good reliable equipment but to get a more reliable set of results could have changed the anode and cathode for each set voltage! I think I had a good range of results that displays my prediction and what I was trying to prove in the experiment. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Changing Materials - The Earth and its Atmosphere section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Changing Materials - The Earth and its Atmosphere essays

  1. Peer reviewed

    To find out how current affects the rate of electrolysis

    3 star(s)

    This is because if they are closer together the current would flow through each electrode faster, therefore increasing the making the rate of electrolysis faster. [http://www.bbc.co.uk/schools/ks3bitesize/sosteacher/science/45200.shtml] Faraday's Law: That the number of moles of substance produced at an electrode during electrolysis is directly proportional to the number of moles of

  2. Investigating the rate of electrolysis.

    If we were to say in this reaction increasing the concentration would speed up the reaction I shouldn't assume that if I double the concentration of one of the reactants that I will double the rate of the reaction. It may happen like that, but the relationship may be more complicated.

  1. Investigate whether changing voltage will affect the rate of Electrolysis.

    The process which caused this is known as reduction. Reduction is the gain of electrons. In its first state the copper was a liquid. By using Electrolysis we add two negative electrodes, this neutralizes the copper and makes it a solid.

  2. The Electrolysis Of Copper (ii) Sulphate Solution Using Copper Electrodes

    It also shows that the results found by the experiment are generally a fraction smaller than what they should be. This is probably due to the copper falling off the electrodes during the time between removing the plates from the Copper(II)

  1. Investigate the factors that affect the mass of Copper deposited on the Copper Cathode ...

    origin is a line of best fit and does not go through all the points. This anomalous result was acquired when calculating the average gain in mass of the copper cathode using the current 0.8A. An average mass of 0.29g of copper was calculated.

  2. Investigating how the amount of copper affects the mass of the cathode

    Therefore, 2 F produces 64g of copper from Cu2+ ions Or 16g of copper from O2- ions A sample of the calculation. Calculate the mass of calcium atoms produced when a current of 5A which is passed for 32 min 10 s through molten calcium bromide (Ca2+ .2Br-) (Ar (Ca)

  1. Investigation into Electrolysis

    The wiped anode was weighed after the completion of the experiment and cathode cleaned of any precipitate. The experiment was completed for Copper, Nickel, Zinc and Aluminium, and their respective aqueous solutions. Results: Stage Anode Cathode Solution(s) Measurements Observations 1a.

  2. The aim of this experiment is to discover how the rate of electrolysis is ...

    It is also a skin irritant so we shall be very careful when pouring it into the beaker, drying/weighing the electrodes and pouring the solution away at the end of the experiment. I found during various previous experiments of this nature, that this is the most efficient way to set up the experiment.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work