• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating a Cantilever.

Extracts from this document...

Introduction

Investigating a Cantilever Research A cantilever is a beam fixed at one end only. They are often used in every day life in structures such as cranes, diving boards and football stadiums. Factors that effect the deflection of a cantilever are mass, length and load. 3 forces affect a cantilever's deflection; these are gravitational forces acting upon the mass and load of a cantilever a compressional force acting on the underside of the cantilever and a tensional force on the upper side of the cantilever. If the cantilever deflects too much it will break. This is either because it is too long or too much weight is acting upon it. Tensional Force Compressional + Tensional Force Compressional Force Weight (Mass x Gravitational Force) I'm going to investigate how changing the load will effect the deflection of the cantilever. Preliminary Test The Preliminary test was taken to find the optimum length of the cantilever for our investigation, a compromise between a very large and very small deflection, one that was measurable and easy to take readings off of. ...read more.

Middle

I will take readings at 5 different masses 3 times per mass and work an average from the 3. This ensures that the final measurement is accurate. The readings will be taken at 100g, 200g, 300g, 400g, and 500g. We will make the test a fair test by making sure that the aspects of the test are non-variable such as the length of the cantilever and the we use the mirror every time to read the measurement. Prediction I think that as the mass of the load increases the deflection of the cantilever will increase proportionally. I think that this will happen because as the compressional and tensional forces (which support the weight of the cantilevers load) increase the cantilever deflects. Length (cm) Mass (g) Start Height (mm) Finish Height (mm) Deflection (mm) Average (mm) (1dp) 50 100 1. 850 2. 850 3. 850 1. 845 2. 844 3. 844 1. 5 2. 6 3. 6 5.6 50 200 1. 850 2. 850 3. 850 1. 839 2. 837 3. 837 1. ...read more.

Conclusion

The odd results came from things such as a member of our group knocking the pin as they took the load on and off or the steadiness off my hand. To prevent this from happening we could have attached the pin to the cantilever more efficiently, it could have been tied on with string. Also a different member of the group could have taken the results, a member with a steadier hand. Ways that you could improve the experiment are you could tie the pin on with string to avoid knocking it. You could also, with a clamp and a stand make sure that the ruler was always at a 90� to the floor and that it was always in exactly the same place. You could make the results more accurate by taking 5 readings instead of 3 per weight and take an average from that. I would extend the experiment by changing the material of the cantilever to plastic, metal or a different type of wood. I would also try taking readings at 10g intervals instead of 100g. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

4 star(s)

This is a well written report on an investigation.
1. The background section is very concise and well researched.
2. The preliminary results is relevant to set up the investigation.
3. The method and results are well structured.
4. The analysis section is well written but brief.
5. The evaluation contains good suggestions but the language used is not as concise as previously.
**** (4 stars)

Marked by teacher Luke Smithen 22/05/2013

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The aim of this experiment was to compare the elasticity of arteries and vein ...

    4 star(s)

    37 40 5.71 -3 120 37 40 5.71 -3 140 37 40 5.71 -3 160 37 40 5.71 -3 180 38 41 8.57 -3 200 38 41 8.57 -3 220 39 41 11.42 -2 240 39 41 11.42 -2 260 40 41 14.28 -1 280 40 41 14.28 -1 300 41 41 17.14 0 Graphs: See attached papers.

  2. Hooke's Law Lab

    - The metre rule used must be calibrated uniformly and it should be kept parallel to the suspended spring while taking the readings. - All readings must be taken at eye-level. - The clamp stand used must be very stable so that the suspended spring doesn't oscillate during the experiment is being performed and thus to prevent anomalous results.

  1. Physics Lab - Conservation of momentum

    Consequently the momentum before the collision and after the collision for each cart can be calculated using the formula ' Momentum = mass x velocity ' 10) Using this one can investigate the principle of conservation of momentum accordingly. Note : for this method four stopwatches shall be required.

  2. Bouncing Ball Experiment

    Therefore the energy that the ball hits the floor with = mh1g * The proportion of energy lost when ball hits the floor = The Coefficient to the restitution of the two objects (CR) * Energy ball leaves the floor with = CR (mh1g)

  1. The effect of the temperature on the viscosity of the syrup.

    Measure the mass of the beaker with syrup 4) Measure the mass of the sphere 5) Place the thermometer inside the beaker containing syrup 6) Turn the electric heater on and place the beaker on top of the electric heater.

  2. Investigation is to see how changing the height of a ramp affects the stopping ...

    This was an anomaly because after the investigation was completed and as my group was analysing the results the results indicated that when the ramp is 8cm high it has a greater average initial velocity and greater average stopping distance than when the ramp is 9cm high, as you can see below (anomalous results highlighted in red).

  1. My investigation is about how the number of paperclips added onto a paper spinner ...

    Some materials are not as strong and rigid as others, like paper is not as strong as card so this would also affect how fast the spinner falls and if different materials are used for different experiments then you cannot compare the results of different weights on the spinner as

  2. Report on Newton's laws of motion

    Newton?s Third Law If you press against the corner of a table with your fingertip, the table pushes your fingertip back and makes a small dimple in your skin while keeps pushing harder, the table will do the same and a larger dent in your skin will appear.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work