• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Investigating an aspect of physics that is relevant to ski jumping.

Extracts from this document...

Introduction

NOTTINGHAM HIGH SCHOOL

## Investigating an aspect of physics that is relevant to ski jumping Aim:        To investigate the effect of varying the perpendicular height of a ramp on the distance travelled by a marble, which has descended the ramp and has been projected in a horizontal direction.

Prediction of the relationship between the height used and the change horizontal distance travelled by the spherical mass.

I believe that height is directly proportional to distance squared. This means that if the height is doubled the distance will quadruple.

Explanation of the prediction in scientific terms.

The formula to work out distance travelled is simply = average speed/total time, however there are many other formula used in working these two out. First the speed, or velocity must be obtained. The velocity of the ball does not depend on the length of the ramp (if friction is discounted) but on the vertical height the ramp is set at or ‘h’. Using previously obtained scientific knowledge I understand that GPE (gravitational potential energy) = kinetic energy. Therefore mgh (mass × gravity × height of ramp)=0.5mv2(0.5 × mass ×velocity squared). Due to there being mass on both sides of the equation it is mathematically acceptable to divide the mass out so the formula looks like so: gh = 0.5v2.

Middle

ime                 =                 √2s / a It is now possible, knowing just the height of the ramp, the height that the ball will fall and gravity to work out how far the ball will travel. Distance = average speed × total time taken. To determine the average speed we take the final velocity and divide it by 2 therefore:

Distance         =         0.5V × t

However, this does not fully explain why the height is directly proportional to the distance squared. The time taken for the ball to drop is always constant, the distance the ball is dropping will remain the same throughout and so will the acceleration (9.8ms-2), therefore we can disregard the time in dealing with the relationship. When working out the velocity the 2g is always the same, therefore that can be disregarded. Therefore the only variable is the square root of the height and so using mathematical deduction the distance must be directly proportional to the square root of the height. This can be rearranged as follows:

Distance2         α                 Height

Brief account, including any data obtained, of the preliminary practical work carried out.

The preliminary work was used to provide good understanding in the practical and help us decide important parts of out method. Many apparatus set-ups were experimented with, ranging from the completely unfeasible to some that provided a large part of the final method.

Conclusion

Explain clearly how your results would be processed and what your expectations are.

From the above method an accurate set of results ought to be produced and there are many things that can be done to these statistics that may be helpful. I suggest a scatter graph of height (on the x axis) against distance squared. I expect there to be a smooth gentle curve upwards, with possibly an anomaly on the way. An example graph that I have constructed is on the next page, this is how I believe my plan will lead to my results being like.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Forces and Motion essays

1. ## The Physics of Paper Helicopters

If a spinning object has more momentum when its mass is far from the center of rotation, then it must require more energy to make such an object go the same speed as one with its mass in the center of rotation.

2. ## A-Level Physics Investigation:The Ski Jumper

But it is a difficult one to adjust as we don't have any appropriate apparatus to do this accurately and systematically. Hence this is not a suitable variable to investigate. Hypothesis We have decided to investigate how the vertical height of drop on the slope relates with the range achieved.

1. ## Squash Ball and Temperature Investigation

With this increase of air pressure within the ball, the ball will deform less when it comes into contact with the floor than it would when it has a lower air pressure because constant, rapid collisions of the air molecules inside the ball help maintain the shape of the ball better at this higher pressure.

2. ## Investigation into the range of a ski jump

This will allow any correlations to be spotted early on and then further predictions to be made. It will also allow the scientist to investigate anomalies. For example: The graph is being plotted as the experiment is taking place. An odd result is spotted (circled).

1. ## In this experiment I aim to find out how the force and mass affect ...

The main problem we found in our experiment was that the trolley kept swaying to the sides, creating a longer journey and most of the time hitting the edge. This wasted a lot of time as we had to conduct the result again.

2. ## Physics - how the launch height affects the horizontal distance a ski jumper travels ...

Other Things to control: We had to make sure that the ball that we were using had been cleaned of all sand before each run otherwise if there was some sand left on the ball, it would cause more friction to be acting on the ball as it went down

1. ## Investigating the Physics of Bunjee Jumping

Hooke's Law is the relationship between the force exerted on a spring or elastic and the extension. Apparatus: * elastic * Masses 50-500g * Mass holder * Stand * Ruler * Plastic Container Lid * Tripod * Glx motion sensor on person mode * Data Studio * Bench * Block

2. ## Investigating the amazingness of theBouncing Ball!

The total kinetic energy, however, usually decreasing , since the impact converts some of the kinetic energy to heat and/or sound and /or permanently distorts the bodies; leaving them with a decreased amount of potential energy. For the collision to be elastic the kinetic energy isn't lost but merely converted • Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to 