• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating factors which affect the period time of a simple pendulum.

Extracts from this document...

Introduction

Physics – Coursework

Investigating factors which affect the period

time of a simple pendulum

Plan

Aim: For my GCSE science coursework we are going to investigate which factors affect the period time of a simple pendulum.

Method

We are going to do three different experiments, where:

  • Firstly we will change the weight attached to the string
  • Secondly we will change the angle that we will drop the string from
  • Thirdly we will change the length of string

On the first experiment, in which we change the weight, we will use five different amounts of weight, starting with 100g and going up 100g each time until reaching 500g. For every different amount of weight record the time for 10 swings. We will then do this for the changing of angles, starting at 20° and then going up, 40°, 60°, 80°, and finally 90°. Again recording the time taken for 10 swings. For the third and final experiment where we will change the length of the string, we will start at 5cm going up 5cm each time until reaching 25cm.

When we change the length of string, for example, we must make sure that the weight and angle stay the same every time.

...read more.

Middle

Time taken for 10 swings (seconds)

Time taken for 1 swing (seconds)

100

12

1.2

200

11

1.1

300

11

1.1

400

11

1.1

500

9

0.9

Changing angle – length of string 30cm, mass 500g

Angle (°)

Time taken for 10 swings (seconds)

Time taken for 1 swing (seconds)

20

13

1.3

40

13

1.3

60

13

1.3

80

12

1.2

90

13

1.3

Changing length of string – mass 500g, angle 45°

Length of string (cm)

√ℓ (cm)

...read more.

Conclusion

Factors, which may have affected the accuracy of my results, include:

  • Error in measurement of angle. This proved difficult to measure as the protractor attached to the clamp was not fixed in place correctly and may have give inaccurate results
  • Error in measurement of string. To improve the accuracy of this I could have off the points off the points with a pen to make sure they were as accurately measured as possible.
  • Human reaction time. Depending on human reaction time, the measurement of the period time could have been measured inaccurately, when setting the stopwatch.
  • Recording of more swings. I could have recorded more swings of the pendulum as it would have been much more accurate and give more results

This procedure is relatively reliable, not including human error, and so I can strongly conclude from these results that, the only factor, which affects the period of a simple pendulum, is its length. As the length increases, so does the period.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    Which factors affect the time period of the swing of a pendulum?

    3 star(s)

    The reason that a pendulum has a higher time period as it gets longer is because it has a further distance to travel to reach the central measuring point, as it rotates in a circular motion, as the length of the pendulum increases, the circumference of the circle created would

  2. Peer reviewed

    length of a simple pendulum affects the time

    4 star(s)

    This means each swing is slightly smaller than the one before. There are two forces acting on the pendulum bob. Gravity tries to pull the bob downwards but this is resisted by the tension in the string. As there are only two forces they can only be balanced when they are in opposite directions.

  1. Determining the acceleration due to gravity by using simple pendulum.

    The experiment consists of a release mechanism, which release a mass (EG Metal ball), which then hits the pad of the base on the floor. The pad and the release mechanism are both connected to the timer, which calculated the time for the ball to travel the length.

  2. The determination of the acceleration due to gravity at the surface of the earth, ...

    I will measure 15� to ensure that the amplitude of displacement is small and stays approximately the same throughout the experiment. As long as the amplitude of displacement is always 15� or under it will not affect the results to a considerable extent.

  1. FACTORS AFECTING SIMPLE PENDULUM`S PERIOD

    I want to experimentally prove it and to do so I choice 6 different masses with the same length of 55 cm and I started with 50 gram and each time added a weight of mass 50 gram to the pendulum and I got the following results.

  2. Additional Science

    5. When the table is complete the averages are calculated with the calculator. Mass (grams) Size (mm) 1st time (secs) 2nd time (secs) 3rd time (secs) 4th time (secs) 5th time (secs) 6th time (secs) 7th time (secs) Average (to 2.d.p)

  1. Aim: To investigate the factors that affect the time period of a pendulum

    Air resistance If there were no other forces acting on it, the pendulum it would keep swinging until it hit something. However, it slows down quite quickly so we know that there must be another force acting on it. This force is friction caused by air resistance.

  2. Pendulum- investigate how the length of a simple pendulum affects the time for a ...

    a ramp that the bigger the angle of the ramp the bigger the acceleration of the trolley. This same principle can be applied to the falling pendulums. The steeper the arc the bigger the acceleration of the pendulum will be. A bigger acceleration means a shorter time for each swing.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work