• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7

# Investigating factors which affect the period time of a simple pendulum.

Extracts from this document...

Introduction

Physics – Coursework

Investigating factors which affect the period

time of a simple pendulum

## Plan

Aim: For my GCSE science coursework we are going to investigate which factors affect the period time of a simple pendulum.

## Method

We are going to do three different experiments, where:

• Firstly we will change the weight attached to the string
• Secondly we will change the angle that we will drop the string from
• Thirdly we will change the length of string

On the first experiment, in which we change the weight, we will use five different amounts of weight, starting with 100g and going up 100g each time until reaching 500g. For every different amount of weight record the time for 10 swings. We will then do this for the changing of angles, starting at 20° and then going up, 40°, 60°, 80°, and finally 90°. Again recording the time taken for 10 swings. For the third and final experiment where we will change the length of the string, we will start at 5cm going up 5cm each time until reaching 25cm.

When we change the length of string, for example, we must make sure that the weight and angle stay the same every time.

...read more.

Middle

Time taken for 10 swings (seconds)

Time taken for 1 swing (seconds)

100

12

1.2

200

11

1.1

300

11

1.1

400

11

1.1

500

9

0.9

Changing angle – length of string 30cm, mass 500g

 Angle (°) Time taken for 10 swings (seconds) Time taken for 1 swing (seconds) 20 13 1.3 40 13 1.3 60 13 1.3 80 12 1.2 90 13 1.3

Changing length of string – mass 500g, angle 45°

 Length of string (cm) √ℓ (cm)
...read more.

Conclusion

Factors, which may have affected the accuracy of my results, include:

• Error in measurement of angle. This proved difficult to measure as the protractor attached to the clamp was not fixed in place correctly and may have give inaccurate results
• Error in measurement of string. To improve the accuracy of this I could have off the points off the points with a pen to make sure they were as accurately measured as possible.
• Human reaction time. Depending on human reaction time, the measurement of the period time could have been measured inaccurately, when setting the stopwatch.
• Recording of more swings. I could have recorded more swings of the pendulum as it would have been much more accurate and give more results

This procedure is relatively reliable, not including human error, and so I can strongly conclude from these results that, the only factor, which affects the period of a simple pendulum, is its length. As the length increases, so does the period.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Forces and Motion essays

1. ## Which factors affect the time period of the swing of a pendulum?

3 star(s)

My actual result for that length of pendulum was 9.28 seconds which is very close to the prediction hence, my results have numerically confirmed my initial prediction. My graph also shows me that as the length of the pendulum increases the time period of that pendulum increases but at an increasing rate.

2. ## length of a simple pendulum affects the time

4 star(s)

This only occurs when the pendulum is in the middle of its swing, so for the rest of the time the two forces are unbalanced; hence the bob swings back and forth. The two forces are equal and opposite. This means there is no resultant force on the bob.

1. ## To investigate the time taken for the pendulum to oscillate for a time period.

This allows us to get a good range and the intervals are close enough together to give an obvious trend. Problems: As we did the experiment, unfortunately things didn't go as they were planned. The main problem was that we were unable to securely hold the pendulum at the intended

2. ## Determining the acceleration due to gravity by using simple pendulum.

There are no anomalous results or anomalies to be seen in the trend of the graph. EXPERIMENT 2 FREE FALLING OBJECT INTRODUCTION The gravitational acceleration can be measured directly by dropping an object and measuring its time rate of change of speed (acceleration)

1. ## In this experiment I aim to find out how the force and mass affect ...

Evaluation I believe that the experiment that I used to find the earth�s gravitational field strength was suitable and was able to accurately show "g". The measurements that needed to be taken were more complex such as the velocity, were measured by a CBL 2 data logger which is a hand held computer connected up to the light gate.

2. ## FACTORS AFECTING SIMPLE PENDULUM`S PERIOD

that it can swing in water but I tried to not to let the string to be in water too because the resistance opposing the motion should be only considered on the pendulum and not the string. And I did the same experiment for length and following results were obtained: Length T10(1)

1. ## The determination of the acceleration due to gravity at the surface of the earth, ...

This helped me verify and check certain details and also finalise my method. I was able to identify the errors and minimise them as much as possible in order to carry out an effective and conclusive experiment. I am going to use a simple pendulum and count the time taken

2. ## What affects the time period of a pendulum.

the effects of gravity will be slightly different Stay in the same area of the earth as much as possible. Human error Human error between releasing the bob and starting the stopwatch. Make sure the same person does each task every time, use a standard pre-release method, i.e. 3,2,1, go.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to
improve your own work