• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating how the height of a runway affects the average speed of a trolley.

Extracts from this document...

Introduction

28802.doc         (Ms. Robinson RB)        28/04/2007

Physics Investigation: Investigating how the height of a runway affects the average speed of a trolleyimage00.png

image01.png

PLANNING:

image10.png

Aim:

The aim of this experiment is to show how the height of a ramp, which a trolley rolls down, will affect its run off speed.image11.png

Factors:

¤   Height                                                                                       ¤   Weight                                                                                       ¤   Surfaceimage12.png

Preliminary:

The preliminary experiment I did prior to the investigation enabled me to choose what factors of the investigation I should keep the same or alter. My results from the preliminary displayed that I should perform the following procedures:

The heights that allow the trolley to go down the ramp at a suitable velocity and whereabouts on the ramp I would allow the trolley to go from in-order to make the test fair and the speed accurate. I found out in the preliminary that 0.05m would be to low a height to begin with and that the trolley would not move fast enough therefore would not reach the end of the 1m run way causing a break in my results.  Then also that if I suspended the ramp higher than 0.5m it was too high, and again I would not be able to gather any results as the trolley would be going to fast.
        That

...read more.

Middle


So if Max GPE = Max KE
I can now work out the velocity by using the following formula:                               velocity = distance/time.  

image14.png


As the height of the ramp is increased there are changes in the GPE and the KE.        
        However as correct as my predicted results are my actual results will not be exactly like those due to friction. They may be quite similar to the results I got when the ramp is set at a low incline, as the acceleration will be faster meaning less friction will be acting on the trolley. However as the height is raised the trolleys velocity increases and the friction will exert a stronger force on the object and will act as a resistance slowing the trolley down causing some of the energy, which I have predicted to be "lost".
        Therefore I predict my results to be slightly lower than the ones predicted, as the height increases the results will even out and won’t be as far spaced apart.
image15.pngimage24.png

image16.jpg

image23.png


Apparatus: image12.png

In the duration of the experiment I will use the following apparatus:
¤   2 x 1m rulers
¤   A ramp / runway
¤   Clamp
¤   Scales
¤   Trolley
¤   Tickertape Vibrator
¤   Ticker Tape
¤   Power pack
¤   Files and paper
image25.png

image19.png

Method: image02.png

To perform this experiment, I will work on my own as this will make the experiment less complex.

...read more.

Conclusion

image07.png

Safety:

There are no real safety issues to worry about, however to be certain that there are no injuries, I will make sure everyone's ramps are well spaced apart, to prevent any trolleys colliding into anyone and that my ramp is very stable to prevent it collapsing and hurting someone’s foot.image08.png

Background Information:

Newton’s law’s of motion:-

  1. “Every object remains at rest or continues to move in a straight line at a constant speed unless acted on by a force.”
  2. “When a force does act on an object, the object will accelerate (or decelerate). The value of the acceleration is proportional to the size of the force.”
  3. “To every action there is an equal or opposite reaction.”

Formulas I might use:-

  1. a=∆v/t (acceleration = change in velocity divided by time)
  2. F=ma (force = mass multiplied by acceleration)
  3. v=d/t (velocity = distance divided by time)

To calculate acceleration "a"image17.png

a  = Change in velocity (m/s)

           time taken (s)

    =   velocity strip 6 – velocity strip 1 (m/s)

                   time from 1 to 6 (s)

    = (10 x L6) – (10 x L1) (m/s)

                  0.5 (s)

image19.png

image09.png

Bibliography:image20.png

Books:

Physics 4 You

Science Exercise Book

Internet:image21.png

        www.google.co.uk

        www.physics4kids.com

        www.ask.co.uk

        www.clipart.com

        www.flamingtext.com

Encyclopaedia:image22.png

        Microsoft Encarta 98

        Microsoft Encarta 2002

© Copyright Prabu Singh England 2003, All rights reserved.                

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Investigate how the weight of an object affects the force required to overcome friction.

    For graph 3: Point 1: % ERROR = ? X * 100 X % ERROR = 0.02 * 100 0.73 % ERROR = 2.74 % (3s.f) Point 2: % ERROR = ? X * 100 X % ERROR = 0.12 * 100 1.2 % ERROR = 10 % Point 3: % ERROR = ?

  2. My investigation is about how the number of paperclips added onto a paper spinner ...

    1m rulers put together was a height that was too high to reach easily so sometimes the spinner was dropped at a height higher or lower height than 2metres. Therefore one person stood on a table and dropped the spinner from the ceiling so that the height the spinner is dropped from cannot affect my results.

  1. The aim of this experiment is to show how different masses attached to a ...

    The trolley will go up as far as possible using the KE gained and will progressively slow down. It will then descend back down the slope. 2. Gravity Force The force of gravity is the force at which the earth, moon, or other massively large object attracts another object towards itself.

  2. In this experiment I aim to find out how the force and mass affect ...

    The electrodes are placed close together either side of the ramp. As the metal ball rolls over them the circuit is completed and starts the stop-clock. As it then rolls over the second set, it again completes the circuit and stops the clock.

  1. Trolley Speed

    A ticker timer is designed to print dots onto tape at a steady rate of 50 dots per second. The use of a ticker- timer can record the motion of a trolley down a runway. As the trolley accelerates down the runway, it pulls the tape through the timer at a faster and faster rate.

  2. Investigation is to see how changing the height of a ramp affects the stopping ...

    I had no difficulties during the investigation as I followed my plan precisely and accurately, this included being aware of the precautions that I had to overcome and keeping the variables controlled, as I successfully achieved this which made my investigation a fair test.

  1. Investigating the Factors Which Affect the Motion of a Trolley Down an Inclined Plane

    I have briefly explained below why I will be using certain equipment, before I write my method: a) The Ticker Tape Timer The Ticker Tape Timer is used to quantify the acceleration, velocity, or displacement of an object in motion, which is attached to the ticker timer.

  2. The experiment consisted of recording the results of a small toy car being allowed ...

    Now we will be able to look back at these values, and using the fixed dimensions of the ramp and desk, be able to compare the actual values to the estimations that we made earlier. The graphs all show different things.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work