• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating how the height of a runway affects the average speed of a trolley.

Extracts from this document...

Introduction

28802.doc         (Ms. Robinson RB)        28/04/2007

Physics Investigation: Investigating how the height of a runway affects the average speed of a trolleyimage00.png

image01.png

PLANNING:

image10.png

Aim:

The aim of this experiment is to show how the height of a ramp, which a trolley rolls down, will affect its run off speed.image11.png

Factors:

¤   Height                                                                                       ¤   Weight                                                                                       ¤   Surfaceimage12.png

Preliminary:

The preliminary experiment I did prior to the investigation enabled me to choose what factors of the investigation I should keep the same or alter. My results from the preliminary displayed that I should perform the following procedures:

The heights that allow the trolley to go down the ramp at a suitable velocity and whereabouts on the ramp I would allow the trolley to go from in-order to make the test fair and the speed accurate. I found out in the preliminary that 0.05m would be to low a height to begin with and that the trolley would not move fast enough therefore would not reach the end of the 1m run way causing a break in my results.  Then also that if I suspended the ramp higher than 0.5m it was too high, and again I would not be able to gather any results as the trolley would be going to fast.
        That

...read more.

Middle


So if Max GPE = Max KE
I can now work out the velocity by using the following formula:                               velocity = distance/time.  

image14.png


As the height of the ramp is increased there are changes in the GPE and the KE.        
        However as correct as my predicted results are my actual results will not be exactly like those due to friction. They may be quite similar to the results I got when the ramp is set at a low incline, as the acceleration will be faster meaning less friction will be acting on the trolley. However as the height is raised the trolleys velocity increases and the friction will exert a stronger force on the object and will act as a resistance slowing the trolley down causing some of the energy, which I have predicted to be "lost".
        Therefore I predict my results to be slightly lower than the ones predicted, as the height increases the results will even out and won’t be as far spaced apart.
image15.pngimage24.png

image16.jpg

image23.png


Apparatus: image12.png

In the duration of the experiment I will use the following apparatus:
¤   2 x 1m rulers
¤   A ramp / runway
¤   Clamp
¤   Scales
¤   Trolley
¤   Tickertape Vibrator
¤   Ticker Tape
¤   Power pack
¤   Files and paper
image25.png

image19.png

Method: image02.png

To perform this experiment, I will work on my own as this will make the experiment less complex.

...read more.

Conclusion

image07.png

Safety:

There are no real safety issues to worry about, however to be certain that there are no injuries, I will make sure everyone's ramps are well spaced apart, to prevent any trolleys colliding into anyone and that my ramp is very stable to prevent it collapsing and hurting someone’s foot.image08.png

Background Information:

Newton’s law’s of motion:-

  1. “Every object remains at rest or continues to move in a straight line at a constant speed unless acted on by a force.”
  2. “When a force does act on an object, the object will accelerate (or decelerate). The value of the acceleration is proportional to the size of the force.”
  3. “To every action there is an equal or opposite reaction.”

Formulas I might use:-

  1. a=∆v/t (acceleration = change in velocity divided by time)
  2. F=ma (force = mass multiplied by acceleration)
  3. v=d/t (velocity = distance divided by time)

To calculate acceleration "a"image17.png

a  = Change in velocity (m/s)

           time taken (s)

    =   velocity strip 6 – velocity strip 1 (m/s)

                   time from 1 to 6 (s)

    = (10 x L6) – (10 x L1) (m/s)

                  0.5 (s)

image19.png

image09.png

Bibliography:image20.png

Books:

Physics 4 You

Science Exercise Book

Internet:image21.png

        www.google.co.uk

        www.physics4kids.com

        www.ask.co.uk

        www.clipart.com

        www.flamingtext.com

Encyclopaedia:image22.png

        Microsoft Encarta 98

        Microsoft Encarta 2002

© Copyright Prabu Singh England 2003, All rights reserved.                

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. What affects the acceleration of a trolley down a ramp?

    The gravitational potential energy is converted to kinetic energy as it falls. If the object falls from rest as it does in this case then the change in potential energy is equal to the gain in kinetic energy. Therefore Mgh=mv�/2 As I said before the first step towards solving a

  2. How the height of a ramp affects the speed of a toy car.

    can use the formula to calculate how much gravitational potential energy the ball had and therefore how much kinetic energy it had: height (m) gravitational energy (Eg) Gravitational potential energy / Joule (Eg/J) 0.017 0.05 x 10 x 0.017 0.0085 0.035 0.05 x 10 x 0.035 0.0175 0.050 0.05 x

  1. Trolley Speed

    Without fair testing the experiment would be useless because the information gathered from the experiment would not be accurate/reliable. Here are some factors that I have drawn up to make my investigation as fair and as accurate as possible. 1.

  2. INVESTIGATING HOW STEEPNESS AFFECTS SPEED

    From my results indicated in the graph I can see that they agreed with my prediction. I predicted that as the steepness of a slope increases the speed of the ball also increases. This is because there is less reaction force balancing the weight as the slop gets steeper, thus there is greater resultant force.

  1. To investigate how the height of a ramp affects the speed of a trolley ...

    Evaluation What I did well..... In my experiment what went well was making sure the trolley was started on the same spot on the ramp ready for each run. Also the timing of the experiment was very good because as soon as the trolley had left the ramp completely the timing was stopped then.

  2. My investigation is about how the number of paperclips added onto a paper spinner ...

    It could not have been because of the wing span, material or weight because we used the same spinner for all the experiments and the weight is the independent variable so it has to change and I do not believe it was easy to make mistakes with adding the weight.

  1. Investigation into factors affecting the speed of a car rolling down a ramp

    The sound energy will be very low and friction may not be too great because the smooth wheels will be rolling down a smooth surface reducing the friction than if there were rubber wheels on a textured surface. Preliminary Experiment Aim: To find the optimum conditions required to carry out

  2. Investigation is to see how changing the height of a ramp affects the stopping ...

    The graphs that I drew matched my predictions, i.e. it was a curve and also showing a positive relationship between stopping distance and the speed of the toy car. As I have mentioned I did come across one anomaly, this was when the ramp was 8cm high the average initial velocity was 109.10 and the average stopping distance was 169.49.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work