• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating how thickness and length affect the resistance of particular wires.

Extracts from this document...

Introduction

Investigating how thickness and length affect the resistance of particular wires

Equipment

The equipment that I will need to perform this experiment will be:-

  • Battery pack
  • 5 Wires
  • A volt meter
  • An ammeter ( 0-15)
  • Crocodile clips
  • Ruler
  • Nickel chrome wire

image00.png

Method

The first thing that needs priority when setting up a circuit is safety. I will handle everything with dry hands and take extra care so that I don’t short circuit the experiment. The experiments will be investigating the relationship between the thickness of the wire and the length of the wire. I will connect up a circuit like shown above, the power supply coming from a power pack. A volt meter and an ammeter will be placed in series and the wire which I will be investigating, so will be changing, will run in parallel to the ammeter. The set up of the circuit will tell me exactly how much current is going through the circuit. With this information I can put the figures into an equation that will work out how much resistance that particular wire has. I chose to investigate length and thickness as they are both continuous as opposed to the type of wire which is -----. Once I have got the readings from the ammeter and voltmeter I can put the data into this equation.

Resistance (r) = voltage (v)

                                                Current (i)

I am going to measure the amount of current which passes through six different thicknesses of nickel chrome.

...read more.

Middle

Thickness

(SWG)

Thickness

(mm)

calculation

Average

(A)

20

0.90

(1.8 + 1.85 + 1.9) ÷ 3

1.85

22

0.71

(1.45 + 1.5 + 1.5) ÷ 3

1.48

24

0.56

(0.15 + 0.15 + 0.2) ÷ 3

1.17

26

0.45

(0.85 + 0.9 + 0.9) ÷ 3

0.88

28

0.37

(0.65 + 0.65 + 0.65) ÷ 3

0.65

30

0.31

(0.4 + 0.4 + 0.4) ÷ 3

0.4

To work out the resistance of each wire I am going to put in the average readings into the equation. The voltage was kept constant at 3volts so I’m going to divide 3 by each of the average readings.

Thickness

(SWG)

Thickness

(mm)

Calculation

Resistance

(  ) 1dp

20

0.90

3 ÷ 1.85

1.6

22

0.71

3 ÷ 1.48

2

24

0.56

3 ÷ 1.17

2.6

26

0.45

3 ÷ 0.88

3.4

28

0.37

3 ÷ 0.65

4.6

30

0.31

         3 ÷ 0.4

7.5

I have plotted a scatter graph of the results to see if there is a pattern. I am hoping that it will be inversely proportional where as the thickness in mm increases the resistance will decreases.

Length

Length (cm)

Result 1, amps (A)

Result 2,amps (A)

Result 3,amps (A)

10

1.5

1.5

1.5

20

0.85

0.85

0.85

30

0.6

0.6

0.6

40

0.45

0.45

0.45

50

0.4

0.4

0.4

60

0.3

0.3

0.3

70

0.25

0.25

0.25

80

0.225

0.225

0.225

90

0.2

0.2

0.2

100

0.15

0.15

0.15

...read more.

Conclusion

  The reason for the resistance to increases as the length increased is because the electrons have to travel further meaning there will be a lot more points where the electrons will be colliding with the ions. I can see that there the results increase at a curtain rate. I have worked out that the average resistance increase is about 1.8 ohms. When working out this calculation I dismissed the reading for 50cm as it was an anomaly.    

Evaluation

I personally think that the experiment went very well. The experiment proved what I originally thought would happen. The resistance increased as the thickness of the wire decreased. My results were very good as I seem not to have any anomilious data and they all support my prediction. I think that my results are quite accurate; the only thing that could have been inaccurate was the length of the wire as we had to keep changing the wires over. Even though I made sure I was as accurate as possible the results could have been 6.6% inaccurate due to the plus or minus 1 factor in the measuring.

  If I had more time to do the experiment I would have done some more repeat readings as there wasn’t enough time to do more than that three sets of results for each thickness of wire. I probably would change the length of wire is I got the chance to redo the experiment. I would make the wire longer, about 50cm or even 100cm. This will reduce the amount of possible inaccuracy as it would go down to 1% or 2%.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Peer reviewed

    Investigation in resistance in wires

    5 star(s)

    mass at the bottom and the heating, so I decided to add as little mass as possible that was still effective and use a micrometer to keep checking that the width of the wire was consistent. A smaller change was I decided to do four repeats on each length and

  2. Physics Coursework Investigating Resistance of wires and its relationship to length.

    However the results didn't change a great deal so the error bars would not be easy to draw on. Copper: Length (mm) Current (i) Voltage (v) 500 0.55 2.46 600 6.20 0.84 700 2.36 0.91 800 5.90 0.97 These results are not very reliable because the voltmeter wasn't working properly and the results were hard to read.

  1. Investigate the resistance of different wires and how at different lengths the voltage increases ...

    with a large number of electrons on its outer shell meaning that more electrons are available so in theory if it has a large amount of electrons on the outer shell it would have a lower resistance to that of a material with lower electrons in the outer shell an

  2. Investigating how thickness and length affect the resistance of a wire.

    continuously flows through wires, it's possible and very likely that they may heat up. To prevent this, use a switch or simple disconnect the circuit when not in use, this stops the voltage flowing and therefore is less likely for the wire to get hot.

  1. Resistance and Wires

    The variable in the first experiment was the length, of test wire that is used in the circuit. The variable in the second part of the investigation was the diameter of 10cm of nickel-chrome wire. I chose these variables for this investigation because they can be manipulated in various ways as shown in the experiment.

  2. Resistance of wires

    for calculating electrical resistance, but still only applies to materials which comply with Ohm's Law (metals). Affecting Factors The four factors that affect the resistance of a wire are: * Material (the wire's material's construction and denseness affects the resistance of it, as, in this case, it depends how freely electrons can flow through it).

  1. Resistance of wires.

    calculate resistance: Resistance is voltage over current which is volts over amps which is ?=V/I Current is voltage over resistance which is volts over ohms which is I=V/? Voltage is current times resistance which is current times resistance which is V=Ix?

  2. Objective: to investigate how the rate of resistance is affected by the different thicknesses ...

    On the other hand if the length is shortened, decreased the resistance will also decline. This is similar to why resistance increases, as the length of the wire increases. The main reason why the resistance will reduce is because there will be less nuclei's and this means that the electrons

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work